Fast Li-Ion-Conducting Garnet-Related Li7-3x Fe x La3Zr2O12 with Uncommon I4̅3d Structure
Fast Li-ion-conducting Li oxide garnets receive a great deal of attention as they are suitable candidates for solid-state Li electrolytes. It was recently shown that Ga-stabilized Li7La3Zr2O12 crystallizes in the acentric cubic space group I4̅3d. This structure can be derived by a symmetry reduction...
Veröffentlicht in: | Chemistry of materials : a publication of the American Chemical Society. - 1998. - 28(2016), 16 vom: 23. Aug., Seite 5943-5951 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Chemistry of materials : a publication of the American Chemical Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Fast Li-ion-conducting Li oxide garnets receive a great deal of attention as they are suitable candidates for solid-state Li electrolytes. It was recently shown that Ga-stabilized Li7La3Zr2O12 crystallizes in the acentric cubic space group I4̅3d. This structure can be derived by a symmetry reduction of the garnet-type Ia3̅d structure, which is the most commonly found space group of Li oxide garnets and garnets in general. In this study, single-crystal X-ray diffraction confirms the presence of space group I4̅3d also for Li7-3x Fe x La3Zr2O12. The crystal structure was characterized by X-ray powder diffraction, single-crystal X-ray diffraction, neutron powder diffraction, and Mößbauer spectroscopy. The crystal-chemical behavior of Fe3+ in Li7La3Zr2O12 is very similar to that of Ga3+. The symmetry reduction seems to be initiated by the ordering of Fe3+ onto the tetrahedral Li1 (12a) site of space group I4̅3d. Electrochemical impedance spectroscopy measurements showed a Li-ion bulk conductivity of up to 1.38 × 10-3 S cm-1 at room temperature, which is among the highest values reported for this group of materials |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 0897-4756 |