Anti-Adhesive Behaviors between Solid Hydrate and Liquid Aqueous Phase Induced by Hydrophobic Silica Nanoparticles

This study introduces an "anti-adhesive force" at the interface of solid hydrate and liquid solution phases. The force was induced by the presence of hydrophobic silica nanoparticles or one of the common anti-agglomerants (AAs), sorbitan monolaurate (Span 20), at the interface. The anti-ad...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 37 vom: 20. Sept., Seite 9513-22
1. Verfasser: Min, Juwon (VerfasserIn)
Weitere Verfasser: Baek, Seungjun, Somasundaran, P, Lee, Jae W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:This study introduces an "anti-adhesive force" at the interface of solid hydrate and liquid solution phases. The force was induced by the presence of hydrophobic silica nanoparticles or one of the common anti-agglomerants (AAs), sorbitan monolaurate (Span 20), at the interface. The anti-adhesive force, which is defined as the maximum pushing force that does not induce the formation of a capillary bridge between the cyclopentane (CP) hydrate particle and the aqueous solution, was measured using a microbalance. Both hydrophobic silica nanoparticles and Span 20 can inhibit adhesion between the CP hydrate probe and the aqueous phase because silica nanoparticles have an aggregative property at the interface, and Span 20 enables the hydrate surface to be wetted with oil. Adding water-soluble sodium dodecyl sulfate (SDS) to the nanoparticle system cannot affect the aggregative property or the distribution of silica nanoparticles at the interface and, thus, cannot change the anti-adhesive effect. However, the combined system of Span 20 and SDS dramatically reduces the interfacial tension: emulsion drops were formed at the interface without any energy input and were adsorbed on the CP hydrate surface, which can cause the growth of hydrate particles. Silica nanoparticles have a good anti-adhesive performance with a relatively smaller dosage and are less influenced by the presence of molecular surfactants; consequently, these nanoparticles may have a good potential for hydrate inhibition as AAs
Beschreibung:Date Completed 06.06.2018
Date Revised 06.06.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b02729