Thermal limits of leaf metabolism across biomes

© 2016 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 23(2017), 1 vom: 10. Jan., Seite 209-223
1. Verfasser: O'sullivan, Odhran S (VerfasserIn)
Weitere Verfasser: Heskel, Mary A, Reich, Peter B, Tjoelker, Mark G, Weerasinghe, Lasantha K, Penillard, Aurore, Zhu, Lingling, Egerton, John J G, Bloomfield, Keith J, Creek, Danielle, Bahar, Nur H A, Griffin, Kevin L, Hurry, Vaughan, Meir, Patrick, Turnbull, Matthew H, Atkin, Owen K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Tcrit Tmax heat waves high-temperature tolerance latitudinal patterns photosynthesis respiration temperature extremes Chlorophyll mehr... 1406-65-1 Chlorophyll A YF5Q9EJC8Y
LEADER 01000naa a22002652 4500
001 NLM263768813
003 DE-627
005 20231224204623.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13477  |2 doi 
028 5 2 |a pubmed24n0879.xml 
035 |a (DE-627)NLM263768813 
035 |a (NLM)27562605 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a O'sullivan, Odhran S  |e verfasserin  |4 aut 
245 1 0 |a Thermal limits of leaf metabolism across biomes 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.10.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2016 John Wiley & Sons Ltd. 
520 |a High-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high-temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site-based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax , the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (˜8 °C) from polar to equatorial regions. Such increases in high-temperature tolerance are much less than expected based on the 20 °C span in high-temperature extremes across the globe. Moreover, with only modest high-temperature tolerance despite high summer temperature extremes, species in mid-latitude (~20-50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat-wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat-wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax , we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat-wave events become more severe with climate change 
650 4 |a Journal Article 
650 4 |a Tcrit 
650 4 |a Tmax 
650 4 |a heat waves 
650 4 |a high-temperature tolerance 
650 4 |a latitudinal patterns 
650 4 |a photosynthesis 
650 4 |a respiration 
650 4 |a temperature extremes 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Chlorophyll A  |2 NLM 
650 7 |a YF5Q9EJC8Y  |2 NLM 
700 1 |a Heskel, Mary A  |e verfasserin  |4 aut 
700 1 |a Reich, Peter B  |e verfasserin  |4 aut 
700 1 |a Tjoelker, Mark G  |e verfasserin  |4 aut 
700 1 |a Weerasinghe, Lasantha K  |e verfasserin  |4 aut 
700 1 |a Penillard, Aurore  |e verfasserin  |4 aut 
700 1 |a Zhu, Lingling  |e verfasserin  |4 aut 
700 1 |a Egerton, John J G  |e verfasserin  |4 aut 
700 1 |a Bloomfield, Keith J  |e verfasserin  |4 aut 
700 1 |a Creek, Danielle  |e verfasserin  |4 aut 
700 1 |a Bahar, Nur H A  |e verfasserin  |4 aut 
700 1 |a Griffin, Kevin L  |e verfasserin  |4 aut 
700 1 |a Hurry, Vaughan  |e verfasserin  |4 aut 
700 1 |a Meir, Patrick  |e verfasserin  |4 aut 
700 1 |a Turnbull, Matthew H  |e verfasserin  |4 aut 
700 1 |a Atkin, Owen K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 23(2017), 1 vom: 10. Jan., Seite 209-223  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:10  |g month:01  |g pages:209-223 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13477  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 10  |c 01  |h 209-223