Beyond the Sparsity-Based Target Detector : A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images

Hyperspectral images provide great potential for target detection, however, new challenges are also introduced for hyperspectral target detection, resulting that hyperspectral target detection should be treated as a new problem and modeled differently. Many classical detectors are proposed based on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 11 vom: 04. Nov., Seite 5345-5357
1. Verfasser: Bo Du (VerfasserIn)
Weitere Verfasser: Yuxiang Zhang, Liangpei Zhang, Dacheng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM263681289
003 DE-627
005 20231224204427.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2601268  |2 doi 
028 5 2 |a pubmed24n0878.xml 
035 |a (DE-627)NLM263681289 
035 |a (NLM)27552753 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bo Du  |e verfasserin  |4 aut 
245 1 0 |a Beyond the Sparsity-Based Target Detector  |b A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Hyperspectral images provide great potential for target detection, however, new challenges are also introduced for hyperspectral target detection, resulting that hyperspectral target detection should be treated as a new problem and modeled differently. Many classical detectors are proposed based on the linear mixing model and the sparsity model. However, the former type of model cannot deal well with spectral variability in limited endmembers, and the latter type of model usually treats the target detection as a simple classification problem and pays less attention to the low target probability. In this case, can we find an efficient way to utilize both the high-dimension features behind hyperspectral images and the limited target information to extract small targets? This paper proposes a novel sparsity-based detector named the hybrid sparsity and statistics detector (HSSD) for target detection in hyperspectral imagery, which can effectively deal with the above two problems. The proposed algorithm designs a hypothesis-specific dictionary based on the prior hypotheses for the test pixel, which can avoid the imbalanced number of training samples for a class-specific dictionary. Then, a purification process is employed for the background training samples in order to construct an effective competition between the two hypotheses. Next, a sparse representation-based binary hypothesis model merged with additive Gaussian noise is proposed to represent the image. Finally, a generalized likelihood ratio test is performed to obtain a more robust detection decision than the reconstruction residual-based detection methods. Extensive experimental results with three hyperspectral data sets confirm that the proposed HSSD algorithm clearly outperforms the state-of-the-art target detectors 
650 4 |a Journal Article 
700 1 |a Yuxiang Zhang  |e verfasserin  |4 aut 
700 1 |a Liangpei Zhang  |e verfasserin  |4 aut 
700 1 |a Dacheng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 11 vom: 04. Nov., Seite 5345-5357  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:11  |g day:04  |g month:11  |g pages:5345-5357 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2601268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 11  |b 04  |c 11  |h 5345-5357