Preharvest UV-C radiation influences physiological, biochemical, and transcriptional changes in strawberry cv. Camarosa
Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 108(2016) vom: 14. Nov., Seite 391-399 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Abiotic stress Antioxidants Fragaria × ananassa Duch. Gray mold disease Anthocyanins Photosystem II Protein Complex Plant Proteins Phenylalanine Ammonia-Lyase EC 4.3.1.24 mehr... |
Zusammenfassung: | Copyright © 2016 Elsevier Masson SAS. All rights reserved. Ultraviolet C (UV-C) radiation is known for preventing fungal decay and enhancing phytochemical content in fruit when applied postharvest. However, limited knowledge is available regarding fruit responses to preharvest application of UV-C radiation. Thus, the effects of UV-C radiation on photosynthetic efficiency, dry matter accumulation and partitioning, fruit yield and decay, phytochemical content, and relative transcript accumulation of genes associated with these metabolic pathways were monitored in strawberry (Fragaria x ananassa Duch.) cv. Camarosa. A reduction in photosynthetic efficiency was followed by a decrease in light harvesting complex LhcIIb-1 mRNA accumulation as well as a decrease in yield per plant. Phenylalanine ammonia lyase activity, phenolic, anthocyanin, and L-ascorbic acid contents were higher in UV-C treated fruit. In addition, preharvest UV-C treatment reduced microorganism incidence in the greenhouse and on the fruit surface, increased the accumulation of β-1,3-Gluc and PR-1 mRNA, and prevented fruit decay |
---|---|
Beschreibung: | Date Completed 07.04.2017 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2016.08.012 |