Coarse climate change projections for species living in a fine-scaled world

© 2016 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 23(2017), 1 vom: 14. Jan., Seite 12-24
1. Verfasser: Nadeau, Christopher P (VerfasserIn)
Weitere Verfasser: Urban, Mark C, Bridle, Jon R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Review autocorrelation grid size impact assessment spatial resolution spatial scaling temporal resolution trend variance
LEADER 01000caa a22002652c 4500
001 NLM263662810
003 DE-627
005 20250220135518.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13475  |2 doi 
028 5 2 |a pubmed25n0878.xml 
035 |a (DE-627)NLM263662810 
035 |a (NLM)27550861 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nadeau, Christopher P  |e verfasserin  |4 aut 
245 1 0 |a Coarse climate change projections for species living in a fine-scaled world 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.10.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2016 John Wiley & Sons Ltd. 
520 |a Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a autocorrelation 
650 4 |a grid size 
650 4 |a impact assessment 
650 4 |a spatial resolution 
650 4 |a spatial scaling 
650 4 |a temporal resolution 
650 4 |a trend 
650 4 |a variance 
700 1 |a Urban, Mark C  |e verfasserin  |4 aut 
700 1 |a Bridle, Jon R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 23(2017), 1 vom: 14. Jan., Seite 12-24  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:14  |g month:01  |g pages:12-24 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13475  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 14  |c 01  |h 12-24