Object Detection Networks on Convolutional Feature Maps

Most object detectors contain two important components: a feature extractor and an object classifier. The feature extractor has rapidly evolved with significant research efforts leading to better deep convolutional architectures. The object classifier, however, has not received much attention and ma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 7 vom: 14. Juli, Seite 1476-1481
1. Verfasser: Shaoqing Ren (VerfasserIn)
Weitere Verfasser: Kaiming He, Girshick, Ross, Xiangyu Zhang, Jian Sun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM263582213
003 DE-627
005 20250220133940.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2601099  |2 doi 
028 5 2 |a pubmed25n0878.xml 
035 |a (DE-627)NLM263582213 
035 |a (NLM)27541490 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shaoqing Ren  |e verfasserin  |4 aut 
245 1 0 |a Object Detection Networks on Convolutional Feature Maps 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.11.2018 
500 |a Date Revised 01.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most object detectors contain two important components: a feature extractor and an object classifier. The feature extractor has rapidly evolved with significant research efforts leading to better deep convolutional architectures. The object classifier, however, has not received much attention and many recent systems (like SPPnet and Fast/Faster R-CNN) use simple multi-layer perceptrons. This paper demonstrates that carefully designing deep networks for object classification is just as important. We experiment with region-wise classifier networks that use shared, region-independent convolutional features. We call them "Networks on Convolutional feature maps" (NoCs). We discover that aside from deep feature maps, a deep and convolutional per-region classifier is of particular importance for object detection, whereas latest superior image classification models (such as ResNets and GoogLeNets) do not directly lead to good detection accuracy without using such a per-region classifier. We show by experiments that despite the effective ResNets and Faster R-CNN systems, the design of NoCs is an essential element for the 1st-place winning entries in ImageNet and MS COCO challenges 2015 
650 4 |a Journal Article 
700 1 |a Kaiming He  |e verfasserin  |4 aut 
700 1 |a Girshick, Ross  |e verfasserin  |4 aut 
700 1 |a Xiangyu Zhang  |e verfasserin  |4 aut 
700 1 |a Jian Sun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 7 vom: 14. Juli, Seite 1476-1481  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:39  |g year:2017  |g number:7  |g day:14  |g month:07  |g pages:1476-1481 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2601099  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 7  |b 14  |c 07  |h 1476-1481