NameClarifier : A Visual Analytics System for Author Name Disambiguation

In this paper, we present a novel visual analytics system called NameClarifier to interactively disambiguate author names in publications by keeping humans in the loop. Specifically, NameClarifier quantifies and visualizes the similarities between ambiguous names and those that have been confirmed i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 1 vom: 11. Jan., Seite 141-150
1. Verfasser: Shen, Qiaomu (VerfasserIn)
Weitere Verfasser: Wu, Tongshuang, Yang, Haiyan, Wu, Yanhong, Qu, Huamin, Cui, Weiwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM26333466X
003 DE-627
005 20231224203657.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0877.xml 
035 |a (DE-627)NLM26333466X 
035 |a (NLM)27514051 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Qiaomu  |e verfasserin  |4 aut 
245 1 0 |a NameClarifier  |b A Visual Analytics System for Author Name Disambiguation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a novel visual analytics system called NameClarifier to interactively disambiguate author names in publications by keeping humans in the loop. Specifically, NameClarifier quantifies and visualizes the similarities between ambiguous names and those that have been confirmed in digital libraries. The similarities are calculated using three key factors, namely, co-authorships, publication venues, and temporal information. Our system estimates all possible allocations, and then provides visual cues to users to help them validate every ambiguous case. By looping users in the disambiguation process, our system can achieve more reliable results than general data mining models for highly ambiguous cases. In addition, once an ambiguous case is resolved, the result is instantly added back to our system and serves as additional cues for all the remaining unidentified names. In this way, we open up the black box in traditional disambiguation processes, and help intuitively and comprehensively explain why the corresponding classifications should hold. We conducted two use cases and an expert review to demonstrate the effectiveness of NameClarifier 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Tongshuang  |e verfasserin  |4 aut 
700 1 |a Yang, Haiyan  |e verfasserin  |4 aut 
700 1 |a Wu, Yanhong  |e verfasserin  |4 aut 
700 1 |a Qu, Huamin  |e verfasserin  |4 aut 
700 1 |a Cui, Weiwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 1 vom: 11. Jan., Seite 141-150  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:11  |g month:01  |g pages:141-150 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 11  |c 01  |h 141-150