Learning to Segment Human by Watching YouTube

An intuition on human segmentation is that when a human is moving in a video, the video-context (e.g., appearance and motion clues) may potentially infer reasonable mask information for the whole human body. Inspired by this, based on popular deep convolutional neural networks (CNN), we explore a ve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 7 vom: 11. Juli, Seite 1462-1468
1. Verfasser: Xiaodan Liang (VerfasserIn)
Weitere Verfasser: Yunchao Wei, Liang Lin, Yunpeng Chen, Xiaohui Shen, Jianchao Yang, Shuicheng Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM26333452X
003 DE-627
005 20231224203657.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2598340  |2 doi 
028 5 2 |a pubmed24n0877.xml 
035 |a (DE-627)NLM26333452X 
035 |a (NLM)27514037 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiaodan Liang  |e verfasserin  |4 aut 
245 1 0 |a Learning to Segment Human by Watching YouTube 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.11.2018 
500 |a Date Revised 01.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a An intuition on human segmentation is that when a human is moving in a video, the video-context (e.g., appearance and motion clues) may potentially infer reasonable mask information for the whole human body. Inspired by this, based on popular deep convolutional neural networks (CNN), we explore a very-weakly supervised learning framework for human segmentation task, where only an imperfect human detector is available along with massive weakly-labeled YouTube videos. In our solution, the video-context guided human mask inference and CNN based segmentation network learning iterate to mutually enhance each other until no further improvement gains. In the first step, each video is decomposed into supervoxels by the unsupervised video segmentation. The superpixels within the supervoxels are then classified as human or non-human by graph optimization with unary energies from the imperfect human detection results and the predicted confidence maps by the CNN trained in the previous iteration. In the second step, the video-context derived human masks are used as direct labels to train CNN. Extensive experiments on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed framework has already achieved superior results than all previous weakly-supervised methods with object class or bounding box annotations. In addition, by augmenting with the annotated masks from PASCAL VOC 2012, our method reaches a new state-of-the-art performance on the human segmentation task 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yunchao Wei  |e verfasserin  |4 aut 
700 1 |a Liang Lin  |e verfasserin  |4 aut 
700 1 |a Yunpeng Chen  |e verfasserin  |4 aut 
700 1 |a Xiaohui Shen  |e verfasserin  |4 aut 
700 1 |a Jianchao Yang  |e verfasserin  |4 aut 
700 1 |a Shuicheng Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 7 vom: 11. Juli, Seite 1462-1468  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:7  |g day:11  |g month:07  |g pages:1462-1468 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2598340  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 7  |b 11  |c 07  |h 1462-1468