Resilience of cassava (Manihot esculenta Crantz) to salinity : implications for food security in low-lying regions

© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 67(2016), 18 vom: 15. Okt., Seite 5403-5413
1. Verfasser: Gleadow, Ros (VerfasserIn)
Weitere Verfasser: Pegg, Amelia, Blomstedt, Cecilia K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Cassava Konzo cyanogenic glucosides food security linamarin salinity sea level. Cyanides
Beschreibung
Zusammenfassung:© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants
Beschreibung:Date Completed 08.11.2017
Date Revised 18.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431