Genome-wide analysis of the fructose 1,6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato

Copyright © 2016 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 108(2016) vom: 10. Nov., Seite 251-265
1. Verfasser: Cai, Bingbing (VerfasserIn)
Weitere Verfasser: Li, Qiang, Xu, Yongchao, Yang, Long, Bi, Huangai, Ai, Xizhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Fructose-1,6-bisphosphate aldolase Genome-wide Segmental duplication Suboptimal temperature stress Tomato Plant Proteins Fructose-Bisphosphate Aldolase EC 4.1.2.13
Beschreibung
Zusammenfassung:Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Fructose 1,6-bisphosphate aldolase (FBA) is a key enzyme in plants that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. FBA genes play significant roles in biotic and abiotic stress responses and also regulate growth and development. Despite the importance of FBA genes, little is known about it in tomato. In this study, we identified 8 FBA genes in tomato and classified them into 2 subgroups based on a phylogenetic tree, gene structures, and conserved motifs. Five (SlFBA1, 2, 3, 4 and 5) and three (SlFBA6, 7, and 8) SlFBA proteins were predicted to be localized in chloroplasts and cytoplasm, respectively. The phylogenetic analysis of FBAs from tomato, Arabidopsis, rice, and other organisms suggested that SlFBA shared the highest protein homology with FBAs from other plants. Synteny analysis indicated that segmental duplication events contributed to the expansion of the tomato FBA family. The expression profiles revealed that all SlFBAs were involved in the response to low and high temperature stresses. SlFBA7 overexpression increased the expression and activities of other main enzymes in Calvin cycle, net photosynthetic rate (Pn), seed size and stem diameter. SlFBA7 overexpression enhanced tolerances in seed germination under suboptimal temperature stresses. Taken together, comprehensive analyses of SlFBAs would provide a basis for understanding of evolution and function of SlFBA family
Beschreibung:Date Completed 07.04.2017
Date Revised 07.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2016.07.019