Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture
Porous carbon materials have drawn tremendous attention due to its applications in energy storage, gas/water purification, catalyst support, and other important fields. However, producing high-performance carbons via a facile and efficient route is still a big challenge. Here we report the synthesis...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 32 vom: 16. Aug., Seite 8042-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Carbon Dioxide 142M471B3J Carbon 7440-44-0 Nitrogen N762921K75 |
Zusammenfassung: | Porous carbon materials have drawn tremendous attention due to its applications in energy storage, gas/water purification, catalyst support, and other important fields. However, producing high-performance carbons via a facile and efficient route is still a big challenge. Here we report the synthesis of microporous carbon materials by employing a steam-explosion method with subsequent potassium activation and carbonization of the obtained popcorn. The obtained carbon features a large specific surface area, high porosity, and doped nitrogen atoms. Using as an electrode material in supercapacitor, it displays a high specific capacitance of 245 F g(-1) at 0.5 A g(-1) and a remarkable stability of 97.8% retention after 5000 cycles at 5 A g(-1). The product also exhibits a high CO2 adsorption capacity of 4.60 mmol g(-1) under 1066 mbar and 25 °C. Both areal specific capacitance and specific CO2 uptake are directly proportional to the surface nitrogen content. This approach could thus enlighten the batch production of porous nitrogen-doped carbons for a wide range of energy and environmental applications |
---|---|
Beschreibung: | Date Completed 05.06.2018 Date Revised 05.06.2018 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.6b01953 |