Web Image Search Re-Ranking With Click-Based Similarity and Typicality

In image search re-ranking, besides the well-known semantic gap, intent gap, which is the gap between the representation of users' query/demand and the real intent of the users, is becoming a major problem restricting the development of image retrieval. To reduce human effects, in this paper, w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 02. Okt., Seite 4617-4630
1. Verfasser: Xiaopeng Yang (VerfasserIn)
Weitere Verfasser: Tao Mei, Yongdong Zhang, Jie Liu, Satoh, Shin'ichi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM26271437X
003 DE-627
005 20231224202342.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2593653  |2 doi 
028 5 2 |a pubmed24n0875.xml 
035 |a (DE-627)NLM26271437X 
035 |a (NLM)27448362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiaopeng Yang  |e verfasserin  |4 aut 
245 1 0 |a Web Image Search Re-Ranking With Click-Based Similarity and Typicality 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In image search re-ranking, besides the well-known semantic gap, intent gap, which is the gap between the representation of users' query/demand and the real intent of the users, is becoming a major problem restricting the development of image retrieval. To reduce human effects, in this paper, we use image click-through data, which can be viewed as the implicit feedback from users, to help overcome the intention gap, and further improve the image search performance. Generally, the hypothesis-visually similar images should be close in a ranking list-and the strategy-images with higher relevance should be ranked higher than others-are widely accepted. To obtain satisfying search results, thus, image similarity and the level of relevance typicality are determinate factors correspondingly. However, when measuring image similarity and typicality, conventional re-ranking approaches only consider visual information and initial ranks of images, while overlooking the influence of click-through data. This paper presents a novel re-ranking approach, named spectral clustering re-ranking with click-based similarity and typicality. First, to learn an appropriate similarity measurement, we propose click-based multi-feature similarity learning algorithm, which conducts metric learning based on click-based triplets selection, and integrates multiple features into a unified similarity space via multiple kernel learning. Then, based on the learnt click-based image similarity measure, we conduct spectral clustering to group visually and semantically similar images into same clusters, and get the final re-rank list by calculating click-based clusters typicality and within-clusters click-based image typicality in descending order. Our experiments conducted on two real-world query-image data sets with diverse representative queries show that our proposed re-ranking approach can significantly improve initial search results, and outperform several existing re-ranking approaches 
650 4 |a Journal Article 
700 1 |a Tao Mei  |e verfasserin  |4 aut 
700 1 |a Yongdong Zhang  |e verfasserin  |4 aut 
700 1 |a Jie Liu  |e verfasserin  |4 aut 
700 1 |a Satoh, Shin'ichi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 10 vom: 02. Okt., Seite 4617-4630  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:10  |g day:02  |g month:10  |g pages:4617-4630 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2593653  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 10  |b 02  |c 10  |h 4617-4630