Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search

Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 02. Okt., Seite 4514-24
1. Verfasser: Liu, Xianglong (VerfasserIn)
Weitere Verfasser: Huang, Lei, Deng, Cheng, Lang, Bo, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM262714345
003 DE-627
005 20231224202342.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2593344  |2 doi 
028 5 2 |a pubmed24n0875.xml 
035 |a (DE-627)NLM262714345 
035 |a (NLM)27448359 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xianglong  |e verfasserin  |4 aut 
245 1 0 |a Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2017 
500 |a Date Revised 23.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Huang, Lei  |e verfasserin  |4 aut 
700 1 |a Deng, Cheng  |e verfasserin  |4 aut 
700 1 |a Lang, Bo  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 10 vom: 02. Okt., Seite 4514-24  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:10  |g day:02  |g month:10  |g pages:4514-24 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2593344  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 10  |b 02  |c 10  |h 4514-24