Query-Driven Approach to Face Clustering and Tagging

In the era of big data, a traditional offline setting to processing image data is simply not tenable. We simply do not have the computational power to process every image with every possible tag; moreover, we will not have the manpower to clean up the potentially noisy results. In this paper, we int...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 02. Okt., Seite 4504-13
1. Verfasser: Zhang, Liyan (VerfasserIn)
Weitere Verfasser: Wang, Xikui, Kalashnikov, Dmitri V, Mehrotra, Sharad, Ramanan, Deva
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM262714272
003 DE-627
005 20231224202342.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2592703  |2 doi 
028 5 2 |a pubmed24n0875.xml 
035 |a (DE-627)NLM262714272 
035 |a (NLM)27448352 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Liyan  |e verfasserin  |4 aut 
245 1 0 |a Query-Driven Approach to Face Clustering and Tagging 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2017 
500 |a Date Revised 23.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the era of big data, a traditional offline setting to processing image data is simply not tenable. We simply do not have the computational power to process every image with every possible tag; moreover, we will not have the manpower to clean up the potentially noisy results. In this paper, we introduce a query-driven approach to visual tagging, focusing on the application of face tagging and clustering. We integrate active learning with query-driven probabilistic databases. Rather than asking a user to provide manual labels so as to minimize the uncertainty of labels (face tags) across the entire data set, we ask the user to provide labels that minimize the uncertainty of his/her query result (e.g., "How many times did Bob and Jim appear together?"). We use a data-driven Gaussian process model of facial appearance to write the probabilistic estimates of facial identity into a probabilistic database, which can then support inference through query answering. Importantly, the database is augmented with contextual constraints (faces in the same image cannot be the same identity, while faces in the same track must be identical). Experiments on the real-world photo collections demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Wang, Xikui  |e verfasserin  |4 aut 
700 1 |a Kalashnikov, Dmitri V  |e verfasserin  |4 aut 
700 1 |a Mehrotra, Sharad  |e verfasserin  |4 aut 
700 1 |a Ramanan, Deva  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 10 vom: 02. Okt., Seite 4504-13  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:10  |g day:02  |g month:10  |g pages:4504-13 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2592703  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 10  |b 02  |c 10  |h 4504-13