|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM262635690 |
003 |
DE-627 |
005 |
20231224202206.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0875.xml
|
035 |
|
|
|a (DE-627)NLM262635690
|
035 |
|
|
|a (NLM)27439962
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rocha, Giseli S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Copper affects biochemical and physiological responses of Selenastrum gracile (Reinsch)
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.01.2017
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copper is an essential metal for several physiological and metabolic processes, but a narrow range regulate its effect in phytoplankton cells. It can affect the production of biomolecules and be toxic at concentrations slightly above those required, e.g. decreasing photosynthesis and increasing respiration. The aims of this study were to analyse the changes in growth and chlorophyll a synthesis, and in biochemistry (total carbohydrates, proteins, lipids and fatty acids) of the freshwater microalga Selenastrum gracile after exposure to copper. Exponentially growing cells were exposed to 5 concentrations of free copper ions (Cu2+) ranging from 0.7 (control) to 13 × 10-8 M for up to 120 h. Free Cu2+ ion concentrations were calculated through the chemical equilibrium model MINEQL+. We observed that copper was responsible for a decrease in cell density and an increase in total protein and lipid production, but no effect on total carbohydrates was detected. The increase in phospholipids and sterols and a decrease in saturated fatty acids under copper exposure suggest a change in conformation of the cell membrane, by decreasing its fluidity. We suggest this serves the cell as a system to avoid the internalization of metal, thereby acting as a detoxifying mechanism
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Chlorophyceae
|
650 |
|
4 |
|a Fatty acids
|
650 |
|
4 |
|a Freshwater
|
650 |
|
4 |
|a Lipids
|
650 |
|
4 |
|a Metal
|
650 |
|
7 |
|a Fatty Acids
|2 NLM
|
650 |
|
7 |
|a Phospholipids
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Copper
|2 NLM
|
650 |
|
7 |
|a 789U1901C5
|2 NLM
|
700 |
1 |
|
|a Parrish, Christopher C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lombardi, Ana T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a da G G Melão, Maria
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Ecotoxicology (London, England)
|d 1992
|g 25(2016), 8 vom: 21. Okt., Seite 1468-1477
|w (DE-627)NLM098212214
|x 1573-3017
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2016
|g number:8
|g day:21
|g month:10
|g pages:1468-1477
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2016
|e 8
|b 21
|c 10
|h 1468-1477
|