Platelet Immobilization on Supported Phospholipid Bilayers for Single Platelet Studies

The worldwide cardiovascular disease (CVD) epidemic is of grave concern. A major role in the etiology of CVDs is played by the platelets (thrombocytes). Platelets are anuclear cell fragments circulating in the blood. Their primary function is to catalyze clot formation, limiting traumatic blood loss...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 33 vom: 23. Aug., Seite 8516-24
1. Verfasser: Uhl, Eva (VerfasserIn)
Weitere Verfasser: Donati, Alessia, Reviakine, Ilya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lipid Bilayers P-Selectin Phospholipids SELP protein, human Streptavidin 9013-20-1
Beschreibung
Zusammenfassung:The worldwide cardiovascular disease (CVD) epidemic is of grave concern. A major role in the etiology of CVDs is played by the platelets (thrombocytes). Platelets are anuclear cell fragments circulating in the blood. Their primary function is to catalyze clot formation, limiting traumatic blood loss in the case of injury. The same process leads to thrombosis in the case of CVDs, which are commonly managed with antiplatelet therapy. Platelets also have other, nonhemostatic functions in wound healing, inflammation, and tissue regeneration. They play a role in the early stages of atherosclerosis and the spread of cancer through metastases. Much remains to be learned about the regulation of these diverse platelet functions under physiological and pathological conditions. Breakthroughs in this regard are expected to come from single platelet studies and systems approaches. The immobilization of platelets at surfaces is advantageous for developing such approaches, but platelets are activated when they come in contact with foreign surfaces. In this work, we develop and validate a protocol for immobilizing platelets on supported lipid bilayers without activation due to immobilization. Our protocol can therefore be used for studying platelets with a wide variety of surface-sensitive techniques
Beschreibung:Date Completed 19.06.2018
Date Revised 20.06.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b01852