DCT Inspired Feature Transform for Image Retrieval and Reconstruction

Scale invariant feature transform (SIFT) is effective for representing images in computer vision tasks, as one of the most resistant feature descriptions to common image deformations. However, two issues should be addressed: first, feature description based on gradient accumulation is not compact an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 14. Sept., Seite 4406-4420
1. Verfasser: Yunhe Wang (VerfasserIn)
Weitere Verfasser: Miaojing Shi, Shan You, Chao Xu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM262429519
003 DE-627
005 20231224201725.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2590323  |2 doi 
028 5 2 |a pubmed24n0874.xml 
035 |a (DE-627)NLM262429519 
035 |a (NLM)27416596 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yunhe Wang  |e verfasserin  |4 aut 
245 1 0 |a DCT Inspired Feature Transform for Image Retrieval and Reconstruction 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scale invariant feature transform (SIFT) is effective for representing images in computer vision tasks, as one of the most resistant feature descriptions to common image deformations. However, two issues should be addressed: first, feature description based on gradient accumulation is not compact and contains redundancies; second, multiple orientations are often extracted from one local region and therefore produce multiple descriptions, which is not good for memory efficiency. To resolve these two issues, this paper introduces a novel method to determine the dominant orientation for multiple-orientation cases, named discrete cosine transform (DCT) intrinsic orientation, and a new DCT inspired feature transform (DIFT). In each local region, it first computes a unique DCT intrinsic orientation via DCT matrix and rotates the region accordingly, and then describes the rotated region with partial DCT matrix coefficients to produce an optimized low-dimensional descriptor. We test the accuracy and robustness of DIFT on real image matching. Afterward, extensive applications performed on public benchmarks for visual retrieval show that using DCT intrinsic orientation achieves performance on a par with SIFT, but with only 60% of its features; replacing the SIFT description with DIFT reduces dimensions from 128 to 32 and improves precision. Image reconstruction resulting from DIFT is presented to show another of its advantages over SIFT 
650 4 |a Journal Article 
700 1 |a Miaojing Shi  |e verfasserin  |4 aut 
700 1 |a Shan You  |e verfasserin  |4 aut 
700 1 |a Chao Xu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 9 vom: 14. Sept., Seite 4406-4420  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:9  |g day:14  |g month:09  |g pages:4406-4420 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2590323  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 9  |b 14  |c 09  |h 4406-4420