Pedestrian Behavior Modeling From Stationary Crowds With Applications to Intelligent Surveillance

Pedestrian behavior modeling and analysis is important for crowd scene understanding and has various applications in video surveillance. Stationary crowd groups are a key factor influencing pedestrian walking patterns but was mostly ignored in the literature. It plays different roles for different p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 14. Sept., Seite 4354-4368
1. Verfasser: Shuai Yi (VerfasserIn)
Weitere Verfasser: Hongsheng Li, Xiaogang Wang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM262429500
003 DE-627
005 20231224201725.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2590322  |2 doi 
028 5 2 |a pubmed24n0874.xml 
035 |a (DE-627)NLM262429500 
035 |a (NLM)27416595 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shuai Yi  |e verfasserin  |4 aut 
245 1 0 |a Pedestrian Behavior Modeling From Stationary Crowds With Applications to Intelligent Surveillance 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pedestrian behavior modeling and analysis is important for crowd scene understanding and has various applications in video surveillance. Stationary crowd groups are a key factor influencing pedestrian walking patterns but was mostly ignored in the literature. It plays different roles for different pedestrians in a crowded scene and can change over time. In this paper, a novel model is proposed to model pedestrian behaviors by incorporating stationary crowd groups as a key component. Through inference on the interactions between stationary crowd groups and pedestrians, our model can be used to investigate pedestrian behaviors. The effectiveness of the proposed model is demonstrated through multiple applications, including walking path prediction, destination prediction, personality attribute classification, and abnormal event detection. To evaluate our model, two large pedestrian walking route datasets are built. The walking routes of around 15 000 pedestrians from two crowd surveillance videos are manually annotated. The datasets will be released to the public and benefit future research on pedestrian behavior analysis and crowd scene understanding 
650 4 |a Journal Article 
700 1 |a Hongsheng Li  |e verfasserin  |4 aut 
700 1 |a Xiaogang Wang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 9 vom: 14. Sept., Seite 4354-4368  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:9  |g day:14  |g month:09  |g pages:4354-4368 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2590322  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 9  |b 14  |c 09  |h 4354-4368