Relative Elastic Modulus Imaging Using Sector Ultrasound Data for Abdominal Applications : An Evaluation of Strategies and Feasibility

We reconstruct the elastic modulus distribution for one tissue mimicking (TM) phantom and two in vivo biopsy-confirmed liver tumors using curvilinear ultrasound echo data. Spatial distribution of the relative elastic modulus values is determined by solving an inverse problem within a region of inter...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 63(2016), 9 vom: 01. Sept., Seite 1432-40
1. Verfasser: Peng, Bo (VerfasserIn)
Weitere Verfasser: Wang, Yu, Yang, Wenjun, Varghese, Tomy, Jiang, Jingfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We reconstruct the elastic modulus distribution for one tissue mimicking (TM) phantom and two in vivo biopsy-confirmed liver tumors using curvilinear ultrasound echo data. Spatial distribution of the relative elastic modulus values is determined by solving an inverse problem within a region of interest (ROI). This inverse problem solution requires knowledge of the ultrasonically measured displacement field in a uniform rectilinear grid to ensure that the resolution on the resultant relative elastic modulus elastogram will be uniform over the entire ROI. Taking advantage of a new speckle tracking algorithm, two different displacement tracking strategies are investigated: 1) sector-shaped ultrasound data were converted to ultrasound data on a rectilinear grid prior to speckle tracking and 2) axial and lateral displacements directly obtained from sector-shaped data were converted to vertical and horizontal displacements on a rectilinear grid after speckle tracking. Compared with strain elastography (SE), TM phantom results show that relative elastic modulus imaging (REMI) using Strategy 2 provided higher contrast-to-noise ratios (>300% and 25% increases compared with SE and REMI using Strategy 1, respectively). Furthermore, in phantoms, REMI using Strategy 2 more accurately (a 1.3% difference to shear wave elastography measurements) estimated the elastic contrast ratio between the target and the background, compared with both SE (20%-25%) and REMI using Strategy 1 (4.1%). It was also observed that relative modulus elastograms were more consistent with anatomical structures visualized on corresponding B-mode images for the two in vivo liver cases. Overall, we conclude that applying REMI is feasible for abdominal organs such as the liver. Strategy 2 offered improved and consistent results for the data investigated
Beschreibung:Date Completed 27.09.2018
Date Revised 13.11.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2016.2589270