A phased strategy to differentiate human CD14+monocytes into classically and alternatively activated macrophages and dendritic cells

There are currently several in vitro strategies to differentiate human CD14(+) monocytes isolated from peripheral blood mononuclear cells (PBMCs) into the M1 or M2 macrophage cell types. Each cell type is then verified using flow cytometric analysis of cell-surface markers. Human CD14(+) monocytes h...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:BioTechniques. - 1991. - 61(2016), 1 vom: 07., Seite 33-41
1. Verfasser: Zarif, Jelani C (VerfasserIn)
Weitere Verfasser: Hernandez, James R, Verdone, James E, Campbell, Scott P, Drake, Charles G, Pienta, Kenneth J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:BioTechniques
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't M1 macrophages M2 macrophages cytokine macrophage polarization monocyte differentiation monocyte-derived dendritic cells multi-nucleated giant cells mehr... peripheral blood mononuclear cells phased strategy IL6 protein, human Interleukin-6 Lipopolysaccharide Receptors
LEADER 01000caa a22002652c 4500
001 NLM262285789
003 DE-627
005 20250220093511.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.2144/000114435  |2 doi 
028 5 2 |a pubmed25n0874.xml 
035 |a (DE-627)NLM262285789 
035 |a (NLM)27401672 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zarif, Jelani C  |e verfasserin  |4 aut 
245 1 2 |a A phased strategy to differentiate human CD14+monocytes into classically and alternatively activated macrophages and dendritic cells 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.10.2017 
500 |a Date Revised 13.11.2018 
500 |a published: Electronic-eCollection 
500 |a Citation Status MEDLINE 
520 |a There are currently several in vitro strategies to differentiate human CD14(+) monocytes isolated from peripheral blood mononuclear cells (PBMCs) into the M1 or M2 macrophage cell types. Each cell type is then verified using flow cytometric analysis of cell-surface markers. Human CD14(+) monocytes have the potential to differentiate into M1 and M2 macrophages, both of which demonstrate varying degrees of cell-surface antigen overlap. Using multiple surface markers with current macrophage polarization protocols, our data reveal several limitations of currently used methods, such as highly ambiguous cell types that possess cell-surface marker overlap and functional similarities. Utilizing interleukin-6 (IL-6) and two phases of cytokine exposure, we have developed a protocol to differentiate human monocytes into M1, M2, or dendritic cells (DCs) with greater efficiency and fidelity relative to macrophages and DCs that are produced by commonly used methods. This is achieved via alterations in cytokine composition, dosing, and incubation times, as well as improvements in verification methodology. Our method reliably reproduces human in vitro monocyte-derived DCs and macrophage models that will aid in better defining and understanding innate and adaptive immunity, as well as pathologic states 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a M1 macrophages 
650 4 |a M2 macrophages 
650 4 |a cytokine 
650 4 |a macrophage polarization 
650 4 |a monocyte differentiation 
650 4 |a monocyte-derived dendritic cells 
650 4 |a multi-nucleated giant cells 
650 4 |a peripheral blood mononuclear cells 
650 4 |a phased strategy 
650 7 |a IL6 protein, human  |2 NLM 
650 7 |a Interleukin-6  |2 NLM 
650 7 |a Lipopolysaccharide Receptors  |2 NLM 
700 1 |a Hernandez, James R  |e verfasserin  |4 aut 
700 1 |a Verdone, James E  |e verfasserin  |4 aut 
700 1 |a Campbell, Scott P  |e verfasserin  |4 aut 
700 1 |a Drake, Charles G  |e verfasserin  |4 aut 
700 1 |a Pienta, Kenneth J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t BioTechniques  |d 1991  |g 61(2016), 1 vom: 07., Seite 33-41  |w (DE-627)NLM012627046  |x 1940-9818  |7 nnas 
773 1 8 |g volume:61  |g year:2016  |g number:1  |g day:07  |g pages:33-41 
856 4 0 |u http://dx.doi.org/10.2144/000114435  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_99 
912 |a GBV_ILN_121 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_640 
912 |a GBV_ILN_754 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2040 
912 |a GBV_ILN_2060 
912 |a GBV_ILN_2099 
912 |a GBV_ILN_2105 
912 |a GBV_ILN_2121 
912 |a GBV_ILN_2470 
951 |a AR 
952 |d 61  |j 2016  |e 1  |b 07  |h 33-41