Low-Rank Decomposition-Based Restoration of Compressed Images via Adaptive Noise Estimation

Images coded at low bit rates in real-world applications usually suffer from significant compression noise, which significantly degrades the visual quality. Traditional denoising methods are not suitable for the content-dependent compression noise, which usually assume that noise is independent and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 01. Sept., Seite 4158-4171
1. Verfasser: Xinfeng Zhang (VerfasserIn)
Weitere Verfasser: Weisi Lin, Ruiqin Xiong, Xianming Liu, Siwei Ma, Wen Gao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM262196476
003 DE-627
005 20231224201229.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2588326  |2 doi 
028 5 2 |a pubmed24n0874.xml 
035 |a (DE-627)NLM262196476 
035 |a (NLM)27392355 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xinfeng Zhang  |e verfasserin  |4 aut 
245 1 0 |a Low-Rank Decomposition-Based Restoration of Compressed Images via Adaptive Noise Estimation 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Images coded at low bit rates in real-world applications usually suffer from significant compression noise, which significantly degrades the visual quality. Traditional denoising methods are not suitable for the content-dependent compression noise, which usually assume that noise is independent and with identical distribution. In this paper, we propose a unified framework of content-adaptive estimation and reduction for compression noise via low-rank decomposition of similar image patches. We first formulate the framework of compression noise reduction based upon low-rank decomposition. Compression noises are removed by soft thresholding the singular values in singular value decomposition of every group of similar image patches. For each group of similar patches, the thresholds are adaptively determined according to compression noise levels and singular values. We analyze the relationship of image statistical characteristics in spatial and transform domains, and estimate compression noise level for every group of similar patches from statistics in both domains jointly with quantization steps. Finally, quantization constraint is applied to estimated images to avoid over-smoothing. Extensive experimental results show that the proposed method not only improves the quality of compressed images obviously for post-processing, but are also helpful for computer vision tasks as a pre-processing method 
650 4 |a Journal Article 
700 1 |a Weisi Lin  |e verfasserin  |4 aut 
700 1 |a Ruiqin Xiong  |e verfasserin  |4 aut 
700 1 |a Xianming Liu  |e verfasserin  |4 aut 
700 1 |a Siwei Ma  |e verfasserin  |4 aut 
700 1 |a Wen Gao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 9 vom: 01. Sept., Seite 4158-4171  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:9  |g day:01  |g month:09  |g pages:4158-4171 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2588326  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 9  |b 01  |c 09  |h 4158-4171