On the use of mass scaling for stable and efficient simulated tempering with molecular dynamics

© 2016 Wiley Periodicals, Inc.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 37(2016), 21 vom: 05. Aug., Seite 2017-28
Auteur principal: Nagai, Tetsuro (Auteur)
Autres auteurs: Pantelopulos, George A, Takahashi, Takuya, Straub, John E
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't Nosé-Hoover thermostat generalized-ensemble algorithm mass scaling molecular dynamics simulated tempering
LEADER 01000caa a22002652c 4500
001 NLM261706454
003 DE-627
005 20250220075343.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24430  |2 doi 
028 5 2 |a pubmed25n0872.xml 
035 |a (DE-627)NLM261706454 
035 |a (NLM)27338239 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nagai, Tetsuro  |e verfasserin  |4 aut 
245 1 0 |a On the use of mass scaling for stable and efficient simulated tempering with molecular dynamics 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.07.2018 
500 |a Date Revised 19.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2016 Wiley Periodicals, Inc. 
520 |a Simulated tempering (ST) is a generalized-ensemble algorithm that employs trajectories exploring a range of temperatures to effectively sample rugged energy landscapes. When implemented using the molecular dynamics method, ST can require the use of short time steps for ensuring the stability of trajectories at high temperatures. To address this shortcoming, a mass-scaling ST (MSST) method is presented in which the particle mass is scaled in proportion to the temperature. Mass scaling in the MSST method leads to velocity distributions that are independent of temperature and eliminates the need for velocity scaling after the accepted temperature updates that are required in conventional ST simulations. The homogeneity in time scales with changing temperature improves the stability of simulations and allows for the use of longer time steps at high temperatures. As a result, the MSST is found to be more efficient than the standard ST method, particularly for cases in which a large temperature range is employed. © 2016 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Nosé-Hoover thermostat 
650 4 |a generalized-ensemble algorithm 
650 4 |a mass scaling 
650 4 |a molecular dynamics 
650 4 |a simulated tempering 
700 1 |a Pantelopulos, George A  |e verfasserin  |4 aut 
700 1 |a Takahashi, Takuya  |e verfasserin  |4 aut 
700 1 |a Straub, John E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 37(2016), 21 vom: 05. Aug., Seite 2017-28  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:37  |g year:2016  |g number:21  |g day:05  |g month:08  |g pages:2017-28 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24430  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2016  |e 21  |b 05  |c 08  |h 2017-28