Multiplicative Noise and Blur Removal by Framelet Decomposition and -Based L-Curve Method

This paper proposes a framelet-based convex optimization model for multiplicative noise and blur removal problem. The main idea is to employ framelet expansion to represent the original image and use the variable decomposition to solve the problem. Because of the nature of multiplicative noise, we d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 01. Sept., Seite 4222-4232
1. Verfasser: Fan Wang (VerfasserIn)
Weitere Verfasser: Xi-Le Zhao, Ng, Michael K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM261701312
003 DE-627
005 20231224200123.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2583793  |2 doi 
028 5 2 |a pubmed24n0872.xml 
035 |a (DE-627)NLM261701312 
035 |a (NLM)27337718 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan Wang  |e verfasserin  |4 aut 
245 1 0 |a Multiplicative Noise and Blur Removal by Framelet Decomposition and -Based L-Curve Method 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper proposes a framelet-based convex optimization model for multiplicative noise and blur removal problem. The main idea is to employ framelet expansion to represent the original image and use the variable decomposition to solve the problem. Because of the nature of multiplicative noise, we decompose the observed data into the original image variable and the noise variable to obtain the resulting model. The original image variable is represented by framelet, and it is determined by using l1-norm in the selection and shrinkage of framelet coefficients. The noise variable is measured by using the mean and the variance of the underlying probability distribution. This framelet setting can be applied to analysis, synthesis, and balanced approaches, and the resulting optimization models are convex, such that they can be solved very efficiently by the alternating direction of a multiplier method. An another contribution of this paper is to propose to select the regularization parameter by using the l1-based L-curve method for these framelet based models. Numerical examples are presented to illustrate the effectiveness of these models and show that the performance of the proposed method is better than that by the existing methods 
650 4 |a Journal Article 
700 1 |a Xi-Le Zhao  |e verfasserin  |4 aut 
700 1 |a Ng, Michael K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 9 vom: 01. Sept., Seite 4222-4232  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:9  |g day:01  |g month:09  |g pages:4222-4232 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2583793  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 9  |b 01  |c 09  |h 4222-4232