Face Search at Scale

Given the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to search for persons of interest among the billions of shared photos on these websites. Despite significant progress in face recognition, searching a large collection of unconstraine...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 6 vom: 18. Juni, Seite 1122-1136
1. Verfasser: Wang, Dayong (VerfasserIn)
Weitere Verfasser: Otto, Charles, Jain, Anil K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM261666029
003 DE-627
005 20250220074643.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2582166  |2 doi 
028 5 2 |a pubmed25n0872.xml 
035 |a (DE-627)NLM261666029 
035 |a (NLM)27333599 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Dayong  |e verfasserin  |4 aut 
245 1 0 |a Face Search at Scale 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2018 
500 |a Date Revised 25.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Given the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to search for persons of interest among the billions of shared photos on these websites. Despite significant progress in face recognition, searching a large collection of unconstrained face images remains a difficult problem. To address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top- k most similar faces using features learned by a convolutional neural network. The k retrieved candidates are re-ranked by combining similarities based on deep features and those output by the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million web-downloaded face images. Experimental results demonstrate that while the deep features perform worse than the COTS matcher on a mugshot dataset (93.7 percent versus 98.6 percent TARFAR of 0.01 percent), fusing the deep features with the COTS matcher improves the overall performance ( 99.5 percent TAR@FAR of 0.01 percent). This shows that the learned deep features provide complementary information over representations used in state-of-the-art face matchers. On the unconstrained face image benchmarks, the performance of the learned deep features is competitive with reported accuracies. LFW database: 98.20 percent accuracy under the standard protocol and 88.03 percent TAR@FAR of 0.1 percent under the BLUFR protocol; IJB-A benchmark: 51.0 percent TAR@FAR of 0.1 percent (verification), rank 1 retrieval of 82.2 percent (closed-set search), 61.5 percent FNIR@FAR of 1 percent (open-set search). The proposed face search system offers an excellent trade-off between accuracy and scalability on galleries with millions of images. Additionally, in a face search experiment involving photos of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed cascade face search system could find the younger brother's (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5 M gallery and at rank 8 in 7 seconds on an 80 M gallery 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Otto, Charles  |e verfasserin  |4 aut 
700 1 |a Jain, Anil K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 6 vom: 18. Juni, Seite 1122-1136  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:39  |g year:2017  |g number:6  |g day:18  |g month:06  |g pages:1122-1136 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2582166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 6  |b 18  |c 06  |h 1122-1136