Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits

© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

Détails bibliographiques
Publié dans:The New phytologist. - 1990. - 212(2016), 3 vom: 22. Nov., Seite 577-589
Auteur principal: Sperry, John S (Auteur)
Autres auteurs: Wang, Yujie, Wolfe, Brett T, Mackay, D Scott, Anderegg, William R L, McDowell, Nate G, Pockman, William T
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:The New phytologist
Sujets:Journal Article climate change drought hydraulic limitation modeling climate change impacts plant drought responses plant water transport stomatal regulation xylem cavitation xylem transport Soil plus... Water 059QF0KO0R
LEADER 01000caa a22002652 4500
001 NLM261631314
003 DE-627
005 20250220074111.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.14059  |2 doi 
028 5 2 |a pubmed25n0872.xml 
035 |a (DE-627)NLM261631314 
035 |a (NLM)27329266 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sperry, John S  |e verfasserin  |4 aut 
245 1 0 |a Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.01.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. 
520 |a Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (Pcanopy ) from soil water potential (Psoil ) and vapor pressure deficit (D). Modeled responses to D and Psoil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and Pcanopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization 
650 4 |a Journal Article 
650 4 |a climate change drought 
650 4 |a hydraulic limitation 
650 4 |a modeling climate change impacts 
650 4 |a plant drought responses 
650 4 |a plant water transport 
650 4 |a stomatal regulation 
650 4 |a xylem cavitation 
650 4 |a xylem transport 
650 7 |a Soil  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Wang, Yujie  |e verfasserin  |4 aut 
700 1 |a Wolfe, Brett T  |e verfasserin  |4 aut 
700 1 |a Mackay, D Scott  |e verfasserin  |4 aut 
700 1 |a Anderegg, William R L  |e verfasserin  |4 aut 
700 1 |a McDowell, Nate G  |e verfasserin  |4 aut 
700 1 |a Pockman, William T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1990  |g 212(2016), 3 vom: 22. Nov., Seite 577-589  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:212  |g year:2016  |g number:3  |g day:22  |g month:11  |g pages:577-589 
856 4 0 |u http://dx.doi.org/10.1111/nph.14059  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 212  |j 2016  |e 3  |b 22  |c 11  |h 577-589