Quenching of Charge and Spin Degrees of Freedom in Condensed Matter

© 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 25 vom: 21. Juli
1. Verfasser: Kagawa, Fumitaka (VerfasserIn)
Weitere Verfasser: Oike, Hiroshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review charge ordering organic conductors phase-change memory quenching skyrmion
LEADER 01000naa a22002652 4500
001 NLM26161973X
003 DE-627
005 20231224195936.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201601979  |2 doi 
028 5 2 |a pubmed24n0872.xml 
035 |a (DE-627)NLM26161973X 
035 |a (NLM)27327878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kagawa, Fumitaka  |e verfasserin  |4 aut 
245 1 0 |a Quenching of Charge and Spin Degrees of Freedom in Condensed Matter 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.07.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Electrons in condensed matter have internal degrees of freedom, such as charge, spin, and orbital, leading to various forms of ordered states through phase transitions. However, in individual materials, a charge/spin/orbital ordered state of the lowest temperature is normally uniquely determined in terms of the lowest-energy state, i.e., the ground state. Here, recent results are summarized showing that under rapid cooling, this principle does not necessarily hold, and thus, the cooling rate is a control parameter of the lowest-temperature state beyond the framework of the thermoequilibrium phase diagram. Although the cooling rate utilized in low-temperature experiments is typically 2 × 10-3 to 4 × 10-1 K s-1 , the use of optical/electronic pulses facilitates rapid cooling, such as 102 -103 K s-1 . Such an unconventionally high cooling rate allows some systems to kinetically avoid a first-order phase transition, resulting in a quenched charge/spin state that differs from the ground state. It is also demonstrated that quenched states can be exploited as a non-volatile state variable when designing phase-change memory functions. The present findings suggest that rapid cooling is useful for exploring and controlling the metastable electronic/magnetic state, which is potentially hidden behind the ground state 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a charge ordering 
650 4 |a organic conductors 
650 4 |a phase-change memory 
650 4 |a quenching 
650 4 |a skyrmion 
700 1 |a Oike, Hiroshi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 25 vom: 21. Juli  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:25  |g day:21  |g month:07 
856 4 0 |u http://dx.doi.org/10.1002/adma.201601979  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 25  |b 21  |c 07