1 H NMR-based metabolomics exploring urinary biomarkers correlated with proteinuria in focal segmental glomerulosclerosis : a pilot study

Copyright © 2016 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 54(2016), 10 vom: 01. Okt., Seite 821-826
1. Verfasser: Kalantari, Shiva (VerfasserIn)
Weitere Verfasser: Nafar, Mohsen, Samavat, Shiva, Parvin, Mahmoud, Nobakht M Gh, B Fatemeh, Barzi, Farnaz
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article 1H NMR-based metabolomics focal segmental glomerulosclerosis metabolite biomarker random forest
LEADER 01000naa a22002652 4500
001 NLM261552023
003 DE-627
005 20231224195808.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1002/mrc.4460  |2 doi 
028 5 2 |a pubmed24n0871.xml 
035 |a (DE-627)NLM261552023 
035 |a (NLM)27320161 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kalantari, Shiva  |e verfasserin  |4 aut 
245 1 0 |a 1 H NMR-based metabolomics exploring urinary biomarkers correlated with proteinuria in focal segmental glomerulosclerosis  |b a pilot study 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2016 John Wiley & Sons, Ltd. 
520 |a Focal segmental glomerulosclerosis (FSGS) is a common glomerulonephritis, and its rates of occurrence are increasing worldwide. Proteinuria is a clinical defining feature of FSGS which correlates with the severity of podocyte injury in patients with nephrotic-range protein excretion. Metabolite biomarkers corresponding with the level of proteinuria could be considered as non-invasive complementary prognostic factors to proteinuria. The urine samples of 15 patients (n = 6 women and n = 9 men) with biopsy-proven FSGS were collected and subjected to nuclear magnetic resonance (NMR) analysis for metabolite profiling. Multivariate statistical analyses, including principal component analysis and orthogonal projection to latent structure discriminant analysis, were applied to construct a predictive model based on patients with proteinuria >3000 mg/day and <3000 mg/day. In addition, random forest was performed to predict differential metabolites, and pathway analysis was performed to find the defective pathways responsible for proteinuria. Ten metabolites, significant in both statistical methods (orthogonal projection to latent structure discriminant analysis and random forest), were considered as prognostic biomarkers for FSGS: citrulline, dimethylamine, proline, acetoacetate, alpha-ketoisovaleric acid, valine, isobutyrate, D-Palmitylcarnitine, histidine, and N-methylnicotinamide. Pathway analysis revealed impairment of the branched-chain amino acid degradation pathways in patients with massive proteinuria. This study shows that metabolomics can reveal the molecular changes corresponding with disease progression in patients with FSGS and provide a new insight for pathogenic pathways. Copyright © 2016 John Wiley & Sons, Ltd 
650 4 |a Journal Article 
650 4 |a 1H NMR-based metabolomics 
650 4 |a focal segmental glomerulosclerosis 
650 4 |a metabolite biomarker 
650 4 |a random forest 
700 1 |a Nafar, Mohsen  |e verfasserin  |4 aut 
700 1 |a Samavat, Shiva  |e verfasserin  |4 aut 
700 1 |a Parvin, Mahmoud  |e verfasserin  |4 aut 
700 1 |a Nobakht M Gh, B Fatemeh  |e verfasserin  |4 aut 
700 1 |a Barzi, Farnaz  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in chemistry : MRC  |d 1985  |g 54(2016), 10 vom: 01. Okt., Seite 821-826  |w (DE-627)NLM098179667  |x 1097-458X  |7 nnns 
773 1 8 |g volume:54  |g year:2016  |g number:10  |g day:01  |g month:10  |g pages:821-826 
856 4 0 |u http://dx.doi.org/10.1002/mrc.4460  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 54  |j 2016  |e 10  |b 01  |c 10  |h 821-826