Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems : Divide-and-conquer, density-functional tight-binding, and massively parallel computation

© 2016 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 37(2016), 21 vom: 05. Aug., Seite 1983-92
1. Verfasser: Nishizawa, Hiroaki (VerfasserIn)
Weitere Verfasser: Nishimura, Yoshifumi, Kobayashi, Masato, Irle, Stephan, Nakai, Hiromi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't density-functional tight-binding method linear-scaling divide-and-conquer method massively parallel computation quantum mechanical molecular dynamics
LEADER 01000naa a22002652 4500
001 NLM261524828
003 DE-627
005 20231224195733.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24419  |2 doi 
028 5 2 |a pubmed24n0871.xml 
035 |a (DE-627)NLM261524828 
035 |a (NLM)27317328 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nishizawa, Hiroaki  |e verfasserin  |4 aut 
245 1 0 |a Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems  |b Divide-and-conquer, density-functional tight-binding, and massively parallel computation 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.07.2018 
500 |a Date Revised 19.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2016 Wiley Periodicals, Inc. 
520 |a The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a density-functional tight-binding method 
650 4 |a linear-scaling divide-and-conquer method 
650 4 |a massively parallel computation 
650 4 |a quantum mechanical molecular dynamics 
700 1 |a Nishimura, Yoshifumi  |e verfasserin  |4 aut 
700 1 |a Kobayashi, Masato  |e verfasserin  |4 aut 
700 1 |a Irle, Stephan  |e verfasserin  |4 aut 
700 1 |a Nakai, Hiromi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 37(2016), 21 vom: 05. Aug., Seite 1983-92  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:37  |g year:2016  |g number:21  |g day:05  |g month:08  |g pages:1983-92 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24419  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2016  |e 21  |b 05  |c 08  |h 1983-92