Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification

In this paper, we present correlated logistic (CorrLog) model for multilabel image classification. CorrLog extends conventional logistic regression model into multilabel cases, via explicitly modeling the pairwise correlation between labels. In addition, we propose to learn the model parameters of C...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 8 vom: 01. Aug., Seite 3801-13
1. Verfasser: Li, Qiang (VerfasserIn)
Weitere Verfasser: Xie, Bo, You, Jane, Bian, Wei, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM261341804
003 DE-627
005 20231224195341.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2577382  |2 doi 
028 5 2 |a pubmed24n0871.xml 
035 |a (DE-627)NLM261341804 
035 |a (NLM)27295670 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Qiang  |e verfasserin  |4 aut 
245 1 0 |a Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.05.2017 
500 |a Date Revised 22.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present correlated logistic (CorrLog) model for multilabel image classification. CorrLog extends conventional logistic regression model into multilabel cases, via explicitly modeling the pairwise correlation between labels. In addition, we propose to learn the model parameters of CorrLog with elastic net regularization, which helps exploit the sparsity in feature selection and label correlations and thus further boost the performance of multilabel classification. CorrLog can be efficiently learned, though approximately, by regularized maximum pseudo likelihood estimation, and it enjoys a satisfying generalization bound that is independent of the number of labels. CorrLog performs competitively for multilabel image classification on benchmark data sets MULAN scene, MIT outdoor scene, PASCAL VOC 2007, and PASCAL VOC 2012, compared with the state-of-the-art multilabel classification algorithms 
650 4 |a Journal Article 
700 1 |a Xie, Bo  |e verfasserin  |4 aut 
700 1 |a You, Jane  |e verfasserin  |4 aut 
700 1 |a Bian, Wei  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 8 vom: 01. Aug., Seite 3801-13  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:8  |g day:01  |g month:08  |g pages:3801-13 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2577382  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 8  |b 01  |c 08  |h 3801-13