Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis

© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 212(2016), 2 vom: 22. Okt., Seite 354-67
1. Verfasser: Aspinwall, Michael J (VerfasserIn)
Weitere Verfasser: Drake, John E, Campany, Courtney, Vårhammar, Angelica, Ghannoum, Oula, Tissue, David T, Reich, Peter B, Tjoelker, Mark G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Eucalyptus acclimation carbohydrates climate change photosynthesis respiration temperature warming Carbohydrates mehr... Carbon Dioxide 142M471B3J Nitrogen N762921K75
Beschreibung
Zusammenfassung:© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair ) or ambient Tair  + 3°C (i.e. 'warmed'). We measured light- and CO2 -saturated net photosynthesis (Amax ) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming
Beschreibung:Date Completed 05.02.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.14035