|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM261078313 |
003 |
DE-627 |
005 |
20231224194759.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.6b01377
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0870.xml
|
035 |
|
|
|a (DE-627)NLM261078313
|
035 |
|
|
|a (NLM)27264296
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Biswas, Kabir H
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Microbead Supported Membrane-Based Fluorescence Imaging Assay Reveals Intermembrane Receptor-Ligand Complex Dimension with Nanometer Precision
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.06.2018
|
500 |
|
|
|a Date Revised 04.12.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Receptor-ligand complexes spanning a cell-cell interface inevitably establish a preferred intermembrane spacing based on the molecular dimensions and orientation of the complexes. This couples molecular binding events to membrane mechanics and large-scale spatial organization of receptors on the cell surface. Here, we describe a straightforward, epi-fluorescence-based method to precisely determine intermembrane receptor-ligand dimension at adhesions established by receptor-ligand binding between apposed membranes in vitro. Adhesions were reconstituted between planar and silica microbead supported membranes via specific interaction between cognate receptor/ligand pairs (EphA2/EphrinA1 and E-cadherin/anti-E-cadherin antibody). Epi-fluorescence imaging of the ligand enrichment zone in the supported membrane beneath the adhering microbead, combined with a simple geometrical interpretation, proves sufficient to estimate intermembrane receptor-ligand dimension with better than 1 nm precision. An advantage of this assay is that no specialized equipment or imaging methods are required
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Antibodies
|2 NLM
|
650 |
|
7 |
|a Antigens, CD
|2 NLM
|
650 |
|
7 |
|a CDH1 protein, human
|2 NLM
|
650 |
|
7 |
|a Cadherins
|2 NLM
|
650 |
|
7 |
|a EPHA2 protein, human
|2 NLM
|
650 |
|
7 |
|a Ephrin-A1
|2 NLM
|
650 |
|
7 |
|a Ephrin-A2
|2 NLM
|
650 |
|
7 |
|a Silicon Dioxide
|2 NLM
|
650 |
|
7 |
|a 7631-86-9
|2 NLM
|
650 |
|
7 |
|a Receptor, EphA2
|2 NLM
|
650 |
|
7 |
|a EC 2.7.10.1
|2 NLM
|
700 |
1 |
|
|a Groves, Jay T
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 32(2016), 26 vom: 05. Juli, Seite 6775-80
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2016
|g number:26
|g day:05
|g month:07
|g pages:6775-80
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.6b01377
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2016
|e 26
|b 05
|c 07
|h 6775-80
|