Morphology Control of Metal-Organic Frameworks Based on Paddle-Wheel Units on Ion-Doped Polymer Substrate Using an Interfacial Growth Approach
A three-dimensional metal-organic framework (MOF) consisting of pillared square-grid nets based on paddle-wheel units was synthesized by interfacial self-assembly of the frameworks on a metal-ion-doped polymer substrate. Although this type of Cu-based MOF is typically synthesized by a two-step solvo...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 24 vom: 21. Juni, Seite 6068-73 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | A three-dimensional metal-organic framework (MOF) consisting of pillared square-grid nets based on paddle-wheel units was synthesized by interfacial self-assembly of the frameworks on a metal-ion-doped polymer substrate. Although this type of Cu-based MOF is typically synthesized by a two-step solvothermal method, the utilization of a metal-ion-doped polymer substrate as a metal source for the framework allowed for the one-pot growth of MOF crystals on the substrate. The morphology of the obtained MOF crystals could be controlled from tetragonal to elongated tetragonal with different aspect ratios by changing the concentrations of the dicarboxylate layer ligands and diamine pillar ligands. The present approach provides a new route for the design and synthesis of MOF crystals and thin films for future applications such as gas membranes, catalysts, and electronic devices |
---|---|
Beschreibung: | Date Completed 18.07.2018 Date Revised 18.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.6b01687 |