Thermoresponsive Polymers for Nuclear Medicine : Which Polymer Is the Best?

Thermoresponsive polymers showing cloud point temperatures (CPT) in aqueous solutions are very promising for the construction of various systems in biomedical field. In many of these applications these polymers get in contact with ionizing radiation, e.g., if they are used as carriers for radiopharm...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 24 vom: 21. Juni, Seite 6115-22
1. Verfasser: Sedláček, Ondřej (VerfasserIn)
Weitere Verfasser: Černoch, Peter, Kučka, Jan, Konefal, Rafał, Štěpánek, Petr, Vetrík, Miroslav, Lodge, Timothy P, Hrubý, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Polymers
Beschreibung
Zusammenfassung:Thermoresponsive polymers showing cloud point temperatures (CPT) in aqueous solutions are very promising for the construction of various systems in biomedical field. In many of these applications these polymers get in contact with ionizing radiation, e.g., if they are used as carriers for radiopharmaceuticals or during radiation sterilization. Despite this fact, radiosensitivity of these polymers is largely overlooked to date. In this work, we describe the effect of electron beam ionizing radiation on the physicochemical and phase separation properties of selected thermoresponsive polymers with CPT between room and body temperature. Stability of the polymers to radiation (doses 0-20 kGy) in aqueous solutions increased in the order poly(N-vinylcaprolactam) (PVCL, the least stable) ≪ poly[N-(2,2-difluoroethyl)acrylamide] (DFP) < poly(N-isopropylacrylamide) (PNIPAM) ≪ poly(2-isopropyl-2-oxazoline-co-2-n-butyl-2-oxazoline) (POX). Even low doses of β radiation (1 kGy), which are highly relevant to the storage of polymer radiotherapeutics and sterilization of biomedical systems, cause significant increase in molecular weight due to cross-linking (except for POX, where this effect is weak). In the case of PVCL irradiated with low doses, the increase in molecular weight induced an increase in the CPT of the polymer. For PNIPAM and DFP, there is strong chain hydrophilization leading to an increase in CPT. From this perspective, POX is the most suitable polymer for the construction of delivery systems that experience exposure to radiation, while PVCL is the least suitable and PNIPAM and DFP are suitable only for low radiation demands
Beschreibung:Date Completed 14.09.2018
Date Revised 02.12.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b01527