|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM260804576 |
003 |
DE-627 |
005 |
20250220052400.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2016.139
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0869.xml
|
035 |
|
|
|a (DE-627)NLM260804576
|
035 |
|
|
|a (NLM)27232414
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Hongliang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Application of annealed red mud to Mn(2+) ion adsorption from aqueous solution
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.09.2016
|
500 |
|
|
|a Date Revised 10.12.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Physicochemical characteristics and Mn(2+) adsorption of annealed red mud were investigated in this study. The annealing temperature (105-900 °C) changed the mineralogical components and the point of zero charge of red mud. By comparison, annealed red mud at 700 °C (ARM700) had a better adsorption effect than other annealed samples, associated with the activated components of available Fe2O3, Al2O3, SiO2 and Na5Al3(SiO4)3CO3 (natrodavyne). The removal efficiency of Mn(2+) by ARM700 was dependent on initial pH, contact time, and initial Mn(2+) concentration of aqueous solution and was ∼56.5% with initial Mn(2+) concentration 385 mg/L at initial pH > 5. The kinetics process was predicted better by the pseudo-second-order model. The Langmuir isotherm displayed a better fitting model than the Freundlich isotherm and the Mn(2+) maximum adsorption capacity of ARM700 was 88.3 mg/g. The competing effects of Cu(2+) and Zn(2+) on Mn(2+) removal were most obvious. There was efficient Mn(2+) removal at the application of ARM700 to the leachate of electrolytic manganese residue
|
650 |
|
4 |
|a Evaluation Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Ferric Compounds
|2 NLM
|
650 |
|
7 |
|a Industrial Waste
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Manganese
|2 NLM
|
650 |
|
7 |
|a 42Z2K6ZL8P
|2 NLM
|
650 |
|
7 |
|a Silicon Dioxide
|2 NLM
|
650 |
|
7 |
|a 7631-86-9
|2 NLM
|
700 |
1 |
|
|a Zheng, Juan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zhongqiong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Long, Qian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qiuyun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 73(2016), 11 vom: 08., Seite 2761-71
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnas
|
773 |
1 |
8 |
|g volume:73
|g year:2016
|g number:11
|g day:08
|g pages:2761-71
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2016.139
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 73
|j 2016
|e 11
|b 08
|h 2761-71
|