Response of Swelling Behavior of Weak Branched Poly(ethylene imine)/Poly(acrylic acid) Polyelectrolyte Multilayers to Thermal Treatment

Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer technique have attracted a great deal of attention as smart responsive materials for biological and other applications in aqueous medium, but their dynamic behavior as a function of exposure to a wide temperature range is still n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 24 vom: 21. Juni, Seite 6020-7
1. Verfasser: Gu, Yuanqing (VerfasserIn)
Weitere Verfasser: Weinheimer, Emily K, Ji, Xiang, Wiener, Clinton G, Zacharia, Nicole S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer technique have attracted a great deal of attention as smart responsive materials for biological and other applications in aqueous medium, but their dynamic behavior as a function of exposure to a wide temperature range is still not well understood. In this work, the thermally dependent swelling behavior of PEMs consisting of branched poly(ethylenimine) and poly(acrylic acid) is studied by temperature controlled in situ spectroscopic ellipsometry. Because of diffusion and interpenetration of polyelectrolytes during film deposition, the PEMs densify with increasing bilayer number, which further affects their water uptake behavior. Upon heating to temperatures below 60 °C, the worsened solvent quality of the PEM in water causes deswelling of the PEMs. However, once heated above this critical temperature, the hydrogen bonds within the PEMs are weakened, which allows for chain rearrangement within the film upon cooling, resulting in enhanced water uptake and increased film thickness. The current work provides fundamental insight into the unique dynamic behavior of weak polyelectrolyte multilayers in water at elevated temperatures
Beschreibung:Date Completed 18.07.2018
Date Revised 18.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b00206