|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM260686506 |
003 |
DE-627 |
005 |
20250220050736.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201506407
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0868.xml
|
035 |
|
|
|a (DE-627)NLM260686506
|
035 |
|
|
|a (NLM)27218679
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Dan
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Surface-Confined Proton-Driven DNA Pump Using a Dynamic 3D DNA Scaffold
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.09.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a A proton-driven molecular pump is devised using a surface-confined dynamic 3D DNA scaffold. A dynamic DNA tetrahedral nanostructure is designed by incorporating a pH-sensitive i-motif sequence in one edge, which serves as the scaffold to ensure highly ordered orientation and spatial isolation of this nanomachine on the macroscopic gold surface. It is found that the switching ability of this dynamic tetrahedron is fully maintained on the surface. Importantly, this proton-driven nanomachine can reversibly pump water and ferricynide in response to pH variation in solution
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a DNA nanostructures
|
650 |
|
4 |
|a dynamic nanodevices
|
650 |
|
4 |
|a nanopumps
|
650 |
|
4 |
|a reversible
|
650 |
|
4 |
|a surface-confined
|
650 |
|
7 |
|a Ferricyanides
|2 NLM
|
650 |
|
7 |
|a Protons
|2 NLM
|
650 |
|
7 |
|a Solutions
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Gold
|2 NLM
|
650 |
|
7 |
|a 7440-57-5
|2 NLM
|
650 |
|
7 |
|a DNA
|2 NLM
|
650 |
|
7 |
|a 9007-49-2
|2 NLM
|
700 |
1 |
|
|a Pei, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Guangbao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Shao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chao, Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lianhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Aldalbahi, Ali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Shiping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Jiye
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan, Chunhai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zuo, Xiaolei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 28(2016), 32 vom: 15. Aug., Seite 6860-5
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2016
|g number:32
|g day:15
|g month:08
|g pages:6860-5
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201506407
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2016
|e 32
|b 15
|c 08
|h 6860-5
|