Joint Data Filtering and Labeling Using Gaussian Processes and Alternating Direction Method of Multipliers

Sequence labeling aims at assigning a label to every sample of a signal (or pixel of an image) while considering the sequentiality (or vicinity) of the samples. To perform this task, many works in the literature first filter and then label the data. Unfortunately, the filtering, which is performed i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 7 vom: 01. Juli, Seite 3059-72
1. Verfasser: Ruiz, Pablo (VerfasserIn)
Weitere Verfasser: Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM260652288
003 DE-627
005 20231224193847.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2558472  |2 doi 
028 5 2 |a pubmed24n0868.xml 
035 |a (DE-627)NLM260652288 
035 |a (NLM)27214879 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ruiz, Pablo  |e verfasserin  |4 aut 
245 1 0 |a Joint Data Filtering and Labeling Using Gaussian Processes and Alternating Direction Method of Multipliers 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2017 
500 |a Date Revised 19.05.2017 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Sequence labeling aims at assigning a label to every sample of a signal (or pixel of an image) while considering the sequentiality (or vicinity) of the samples. To perform this task, many works in the literature first filter and then label the data. Unfortunately, the filtering, which is performed independently from the labeling, is far from optimal and frequently makes the latter task harder. In this paper, a novel approach that trains a Gaussian process classifier and estimates the coefficients of an optimal filter jointly is presented. The new approach, based on Bayesian modeling and alternating direction method of multipliers (ADMMs) optimization, performs both tasks simultaneously. All unknowns are treated as stochastic variables, which are estimated using variational inference and filtering and labeling are linked with the use of ADMM. In the experimental section, synthetic and real experiments are presented to compare the proposed method with other existing approaches 
650 4 |a Journal Article 
700 1 |a Molina, Rafael  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 7 vom: 01. Juli, Seite 3059-72  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:7  |g day:01  |g month:07  |g pages:3059-72 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2558472  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 7  |b 01  |c 07  |h 3059-72