Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors

This paper proposes a joint segmentation and deconvolution Bayesian method for medical ultrasound (US) images. Contrary to piecewise homogeneous images, US images exhibit heavy characteristic speckle patterns correlated with the tissue structures. The generalized Gaussian distribution (GGD) has been...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 8 vom: 17. Aug., Seite 3736-50
1. Verfasser: Zhao, Ningning (VerfasserIn)
Weitere Verfasser: Basarab, Adrian, Kouame, Denis, Tourneret, Jean-Yves
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM260427322
003 DE-627
005 20231224193400.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2567074  |2 doi 
028 5 2 |a pubmed24n0868.xml 
035 |a (DE-627)NLM260427322 
035 |a (NLM)27187959 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Ningning  |e verfasserin  |4 aut 
245 1 0 |a Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.05.2017 
500 |a Date Revised 22.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper proposes a joint segmentation and deconvolution Bayesian method for medical ultrasound (US) images. Contrary to piecewise homogeneous images, US images exhibit heavy characteristic speckle patterns correlated with the tissue structures. The generalized Gaussian distribution (GGD) has been shown to be one of the most relevant distributions for characterizing the speckle in US images. Thus, we propose a GGD-Potts model defined by a label map coupling US image segmentation and deconvolution. The Bayesian estimators of the unknown model parameters, including the US image, the label map, and all the hyperparameters are difficult to be expressed in a closed form. Thus, we investigate a Gibbs sampler to generate samples distributed according to the posterior of interest. These generated samples are finally used to compute the Bayesian estimators of the unknown parameters. The performance of the proposed Bayesian model is compared with the existing approaches via several experiments conducted on realistic synthetic data and in vivo US images 
650 4 |a Journal Article 
700 1 |a Basarab, Adrian  |e verfasserin  |4 aut 
700 1 |a Kouame, Denis  |e verfasserin  |4 aut 
700 1 |a Tourneret, Jean-Yves  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 8 vom: 17. Aug., Seite 3736-50  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:8  |g day:17  |g month:08  |g pages:3736-50 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2567074  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 8  |b 17  |c 08  |h 3736-50