Information-Theoretic Compressive Measurement Design

An information-theoretic projection design framework is proposed, of interest for feature design and compressive measurements. Both Gaussian and Poisson measurement models are considered. The gradient of a proposed information-theoretic metric (ITM) is derived, and a gradient-descent algorithm is ap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 6 vom: 17. Juni, Seite 1150-1164
1. Verfasser: Wang, Liming (VerfasserIn)
Weitere Verfasser: Chen, Minhua, Rodrigues, Miguel, Wilcox, David, Calderbank, Robert, Carin, Lawrence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM260427276
003 DE-627
005 20250220043556.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2568189  |2 doi 
028 5 2 |a pubmed25n0868.xml 
035 |a (DE-627)NLM260427276 
035 |a (NLM)27187951 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Liming  |e verfasserin  |4 aut 
245 1 0 |a Information-Theoretic Compressive Measurement Design 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2018 
500 |a Date Revised 25.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a An information-theoretic projection design framework is proposed, of interest for feature design and compressive measurements. Both Gaussian and Poisson measurement models are considered. The gradient of a proposed information-theoretic metric (ITM) is derived, and a gradient-descent algorithm is applied in design; connections are made to the information bottleneck. The fundamental solution structure of such design is revealed in the case of a Gaussian measurement model and arbitrary input statistics. This new theoretical result reveals how ITM parameter settings impact the number of needed projection measurements, with this verified experimentally. The ITM achieves promising results on real data, for both signal recovery and classification 
650 4 |a Journal Article 
700 1 |a Chen, Minhua  |e verfasserin  |4 aut 
700 1 |a Rodrigues, Miguel  |e verfasserin  |4 aut 
700 1 |a Wilcox, David  |e verfasserin  |4 aut 
700 1 |a Calderbank, Robert  |e verfasserin  |4 aut 
700 1 |a Carin, Lawrence  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 6 vom: 17. Juni, Seite 1150-1164  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:6  |g day:17  |g month:06  |g pages:1150-1164 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2568189  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 6  |b 17  |c 06  |h 1150-1164