Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast

Copyright © 2016 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 106(2016) vom: 25. Sept., Seite 208-17
1. Verfasser: Verma, Pankaj Kumar (VerfasserIn)
Weitere Verfasser: Verma, Shikha, Meher, Alok Kumar, Pande, Veena, Mallick, Shekhar, Bansiwal, Amit Kumar, Tripathi, Rudra Deo, Dhankher, Om Parkash, Chakrabarty, Debasis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Arsenic GSH Glutaredoxin Oryza sativa OsGrxs Aquaporins Arsenites Glutaredoxins RNA, Messenger mehr... Saccharomyces cerevisiae Proteins Arsenate Reductases EC 1.20.- Glutathione Reductase EC 1.8.1.7 Protein Disulfide Reductase (Glutathione) EC 1.8.4.2 Glutathione GAN16C9B8O arsenite N5509X556J
Beschreibung
Zusammenfassung:Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Arsenic (As) is an acute poison and class I carcinogen, can cause a serious health risk. Staple crops like rice are the primary source of As contamination in human food. Rice grown on As contaminated areas accumulates higher As in their edible parts. Based on our previous transcriptome data, two rice glutaredoxins (OsGrx_C7 and OsGrx_C2.1) were identified that showed up-regulated expression during As stress. Here, we report OsGrx_C7 and OsGrx_C2.1 from rice involved in the regulation of intracellular arsenite (AsIII). To elucidate the mechanism of OsGrx mediated As tolerance, both OsGrxs were cloned and expressed in Escherichia coli (Δars) and Saccharomyces cerevisiae mutant strains (Δycf1, Δacr3). The expression of OsGrxs increased As tolerance in E. coli (Δars) mutant strain (up to 4 mM AsV and up to 0.6 mM AsIII). During AsIII exposure, S. cerevisiae (Δacr3) harboring OsGrx_C7 and OsGrx_C2.1 have lower intracellular AsIII accumulation (up to 30.43% and 24.90%, respectively), compared to vector control. Arsenic accumulation in As-sensitive S. cerevisiae mutant (Δycf1) also reduced significantly on exposure to inorganic As. The expression of OsGrxs in yeast maintained intracellular GSH pool and increased extracellular GSH concentration. Purified OsGrxs displays in vitro GSH-disulfide oxidoreductase, glutathione reductase and arsenate reductase activities. Also, both OsGrxs are involved in AsIII extrusion by altering the Fps1 transcripts in yeast and protect the cell by maintaining cellular GSH pool. Thus, our results strongly suggest that OsGrxs play a crucial role in the maintenance of the intracellular GSH pool and redox status of the cell during both AsV and AsIII stress and might be involved in regulating intracellular AsIII levels by modulation of aquaporin expression and functions
Beschreibung:Date Completed 27.03.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2016.04.052