Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification

Copyright © 2016 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 198(2016) vom: 01. Juli, Seite 81-8
1. Verfasser: Sun, Li (VerfasserIn)
Weitere Verfasser: Lu, Yufang, Kronzucker, Herbert J, Shi, Weiming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Continuous collection Duckweed root exudates Eutrophication Fatty acid amides Nitrogen-removal stimulation Plant-microbe interactions Amides Erucic Acids Fatty Acids mehr... Oleic Acids Plant Exudates erucyl amide 0V89VY25BN oleylamide 7L25QK8BWO Nitrite Reductases EC 1.7.- Nitrate Reductase EC 1.7.99.4 Nitrogen N762921K75
Beschreibung
Zusammenfassung:Copyright © 2016 Elsevier GmbH. All rights reserved.
Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems
Beschreibung:Date Completed 10.04.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2016.04.010