|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM259956813 |
003 |
DE-627 |
005 |
20231224192330.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.jplph.2016.04.004
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0866.xml
|
035 |
|
|
|a (DE-627)NLM259956813
|
035 |
|
|
|a (NLM)27137993
|
035 |
|
|
|a (PII)S0176-1617(16)30020-7
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Nyarukowa, Christopher
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a SWAPDT
|b A method for Short-time Withering Assessment of Probability for Drought Tolerance in Camellia sinensis validated by targeted metabolomics
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.04.2017
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2016. Published by Elsevier GmbH.
|
520 |
|
|
|a Climate change is causing droughts affecting crop production on a global scale. Classical breeding and selection strategies for drought-tolerant cultivars will help prevent crop losses. Plant breeders, for all crops, need a simple and reliable method to identify drought-tolerant cultivars, but such a method is missing. Plant metabolism is often disrupted by abiotic stress conditions. To survive drought, plants reconfigure their metabolic pathways. Studies have documented the importance of metabolic regulation, i.e. osmolyte accumulation such as polyols and sugars (mannitol, sorbitol); amino acids (proline) during drought. This study identified and quantified metabolites in drought tolerant and drought susceptible Camellia sinensis cultivars under wet and drought stress conditions. For analyses, GC-MS and LC-MS were employed for metabolomics analysis.%RWC results show how the two drought tolerant and two drought susceptible cultivars differed significantly (p≤0.05) from one another; the drought susceptible exhibited rapid water loss compared to the drought tolerant. There was a significant variation (p<0.05) in metabolite content (amino acid, sugars) between drought tolerant and drought susceptible tea cultivars after short-time withering conditions. These metabolite changes were similar to those seen in other plant species under drought conditions, thus validating this method. The Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) method presented here provides an easy method to identify drought tolerant tea cultivars that will mitigate the effects of drought due to climate change on crop losses
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Abiotic stress
|
650 |
|
4 |
|a Amino acids
|
650 |
|
4 |
|a Camellia sinensis
|
650 |
|
4 |
|a Carbohydrates
|
650 |
|
4 |
|a Drought tolerance
|
650 |
|
4 |
|a GC–MS
|
650 |
|
4 |
|a LC–MS
|
650 |
|
4 |
|a Metabolite profiling
|
650 |
|
4 |
|a Short-time withering
|
650 |
|
4 |
|a Targeted metabolomics
|
650 |
|
7 |
|a Amino Acids
|2 NLM
|
650 |
|
7 |
|a Flavonoids
|2 NLM
|
650 |
|
7 |
|a Polyphenols
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
700 |
1 |
|
|a Koech, Robert
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Loots, Theodor
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Apostolides, Zeno
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of plant physiology
|d 1979
|g 198(2016) vom: 01. Juli, Seite 39-48
|w (DE-627)NLM098174622
|x 1618-1328
|7 nnns
|
773 |
1 |
8 |
|g volume:198
|g year:2016
|g day:01
|g month:07
|g pages:39-48
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.jplph.2016.04.004
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 198
|j 2016
|b 01
|c 07
|h 39-48
|