Enhanced decolorization of dyes by an iron modified clay and thermodynamic parameters

The sorption processes of red 5 (R5) and yellow 5 (Y5) dyes by iron modified and sodium bentonite in aqueous solutions was evaluated. The modified clay was prepared, conditioned and characterized. The sodium clay did not remove any of either dye. The sorption kinetics and isotherms of R5 and Y5 dyes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 73(2016), 8 vom: 23., Seite 2007-16
1. Verfasser: Contreras Olivares, N (VerfasserIn)
Weitere Verfasser: Díaz-Nava, M C, Solache-Ríos, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Aluminum Silicates Coloring Agents Water Pollutants, Chemical Bentonite 1302-78-9 Iron E1UOL152H7 Clay T1FAD4SS2M
Beschreibung
Zusammenfassung:The sorption processes of red 5 (R5) and yellow 5 (Y5) dyes by iron modified and sodium bentonite in aqueous solutions was evaluated. The modified clay was prepared, conditioned and characterized. The sodium clay did not remove any of either dye. The sorption kinetics and isotherms of R5 and Y5 dyes by iron modified clay were determined. The maximum removal percentages achieved were 97% and 98% for R5 and Y5, respectively, and a contact time of 72 h; the experimental data were best adjusted to Ho model. The isotherms of both dyes were best adjusted to the Langmuir model and the maximum adsorption capacities of the modified clay were 11.26 mg/g and 5.28 mg/g for R5 and Y5, respectively. These results indicate that adsorption processes have a high probability to be described as chemisorption on a homogeneous material. Temperature range between 283 and 213 K does not affect the adsorption of Y5 by the iron modified clay, but the adsorption process of R5 was affected, and the thermodynamic parameters could be calculated, which indicate a chemisorption mechanism
Beschreibung:Date Completed 22.08.2016
Date Revised 02.12.2018
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2016.038