Marangoni Convection in Evaporating Organic Liquid Droplets on a Nonwetting Substrate

We quantitatively characterize the flow field inside organic liquid droplets evaporating on a nonwetting substrate. A mushroom-structured surface yields the desired nonwetting behavior with methanol droplets, while use of a cooled substrate (5-15 °C) slows the rate of evaporation to allow quasi-stat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 19 vom: 17. Mai, Seite 4729-35
1. Verfasser: Chandramohan, Aditya (VerfasserIn)
Weitere Verfasser: Dash, Susmita, Weibel, Justin A, Chen, Xuemei, Garimella, Suresh V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259784486
003 DE-627
005 20231224191942.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.6b00307  |2 doi 
028 5 2 |a pubmed24n0865.xml 
035 |a (DE-627)NLM259784486 
035 |a (NLM)27119436 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chandramohan, Aditya  |e verfasserin  |4 aut 
245 1 0 |a Marangoni Convection in Evaporating Organic Liquid Droplets on a Nonwetting Substrate 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2018 
500 |a Date Revised 21.05.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We quantitatively characterize the flow field inside organic liquid droplets evaporating on a nonwetting substrate. A mushroom-structured surface yields the desired nonwetting behavior with methanol droplets, while use of a cooled substrate (5-15 °C) slows the rate of evaporation to allow quasi-static particle image velocimetry. Visualization reveals a toroidal vortex within the droplet that is characteristic of surface tension-driven flow; we demonstrate by means of a scaling analysis that this recirculating flow is Marangoni convection. The velocities in the droplet are on the order of 10-45 mm/s. Thus, unlike in the case of evaporation on wetting substrates where Marangoni convection can be ignored for the purpose of estimating the evaporation rate, advection due to the surface tension-driven flow plays a dominant role in the heat transfer within an evaporating droplet on a nonwetting substrate because of the large height-to-radius aspect ratio of the droplet. We formulate a reduced-order model that includes advective transport within the droplet for prediction of organic liquid droplet evaporation on a nonwetting substrate and confirm that the predicted temperature differential across the height of the droplet matches experiments 
650 4 |a Journal Article 
700 1 |a Dash, Susmita  |e verfasserin  |4 aut 
700 1 |a Weibel, Justin A  |e verfasserin  |4 aut 
700 1 |a Chen, Xuemei  |e verfasserin  |4 aut 
700 1 |a Garimella, Suresh V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 32(2016), 19 vom: 17. Mai, Seite 4729-35  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:32  |g year:2016  |g number:19  |g day:17  |g month:05  |g pages:4729-35 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.6b00307  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 32  |j 2016  |e 19  |b 17  |c 05  |h 4729-35