Compressive Sampling-Based Image Coding for Resource-Deficient Visual Communication

In this paper, a new compressive sampling-based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 6 vom: 20. Juni, Seite 2844-2855
1. Verfasser: Xianming Liu (VerfasserIn)
Weitere Verfasser: Deming Zhai, Jiantao Zhou, Xinfeng Zhang, Debin Zhao, Wen Gao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259619426
003 DE-627
005 20231224191606.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2554320  |2 doi 
028 5 2 |a pubmed24n0865.xml 
035 |a (DE-627)NLM259619426 
035 |a (NLM)27101606 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xianming Liu  |e verfasserin  |4 aut 
245 1 0 |a Compressive Sampling-Based Image Coding for Resource-Deficient Visual Communication 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a new compressive sampling-based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of the local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering and 2) remain a conventional image and can therefore be coded by any standardized codec to remove the statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as the multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates 
650 4 |a Journal Article 
700 1 |a Deming Zhai  |e verfasserin  |4 aut 
700 1 |a Jiantao Zhou  |e verfasserin  |4 aut 
700 1 |a Xinfeng Zhang  |e verfasserin  |4 aut 
700 1 |a Debin Zhao  |e verfasserin  |4 aut 
700 1 |a Wen Gao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 6 vom: 20. Juni, Seite 2844-2855  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:6  |g day:20  |g month:06  |g pages:2844-2855 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2554320  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 6  |b 20  |c 06  |h 2844-2855