|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM259619353 |
003 |
DE-627 |
005 |
20231224191606.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2016.2554121
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0865.xml
|
035 |
|
|
|a (DE-627)NLM259619353
|
035 |
|
|
|a (NLM)27101598
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tao, Michael W
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.09.2018
|
500 |
|
|
|a Date Revised 20.09.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular, apart from conventional image shading, one can refocus images after acquisition, and shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. We present a principled algorithm for dense depth estimation that combines defocus and correspondence metrics. We then extend our analysis to the additional cue of shading, using it to refine fine details in the shape. By exploiting an all-in-focus image, in which pixels are expected to exhibit angular coherence, we define an optimization framework that integrates photo consistency, depth consistency, and shading consistency. We show that combining all three sources of information: defocus, correspondence, and shading, outperforms state-of-the-art light-field depth estimation algorithms in multiple scenarios
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Srinivasan, Pratul P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hadap, Sunil
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rusinkiewicz, Szymon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Malik, Jitendra
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ramamoorthi, Ravi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 39(2017), 3 vom: 20. März, Seite 546-560
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2017
|g number:3
|g day:20
|g month:03
|g pages:546-560
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2016.2554121
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2017
|e 3
|b 20
|c 03
|h 546-560
|