Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence

Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 20. März, Seite 546-560
1. Verfasser: Tao, Michael W (VerfasserIn)
Weitere Verfasser: Srinivasan, Pratul P, Hadap, Sunil, Rusinkiewicz, Szymon, Malik, Jitendra, Ramamoorthi, Ravi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM259619353
003 DE-627
005 20231224191606.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2554121  |2 doi 
028 5 2 |a pubmed24n0865.xml 
035 |a (DE-627)NLM259619353 
035 |a (NLM)27101598 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tao, Michael W  |e verfasserin  |4 aut 
245 1 0 |a Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.09.2018 
500 |a Date Revised 20.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular, apart from conventional image shading, one can refocus images after acquisition, and shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. We present a principled algorithm for dense depth estimation that combines defocus and correspondence metrics. We then extend our analysis to the additional cue of shading, using it to refine fine details in the shape. By exploiting an all-in-focus image, in which pixels are expected to exhibit angular coherence, we define an optimization framework that integrates photo consistency, depth consistency, and shading consistency. We show that combining all three sources of information: defocus, correspondence, and shading, outperforms state-of-the-art light-field depth estimation algorithms in multiple scenarios 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Srinivasan, Pratul P  |e verfasserin  |4 aut 
700 1 |a Hadap, Sunil  |e verfasserin  |4 aut 
700 1 |a Rusinkiewicz, Szymon  |e verfasserin  |4 aut 
700 1 |a Malik, Jitendra  |e verfasserin  |4 aut 
700 1 |a Ramamoorthi, Ravi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 3 vom: 20. März, Seite 546-560  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:3  |g day:20  |g month:03  |g pages:546-560 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2554121  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 3  |b 20  |c 03  |h 546-560