Compressed Submanifold Multifactor Analysis

Although widely used, Multilinear PCA (MPCA), one of the leading multilinear analysis methods, still suffers from four major drawbacks. First, it is very sensitive to outliers and noise. Second, it is unable to cope with missing values. Third, it is computationally expensive since MPCA deals with la...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 20. März, Seite 444-456
1. Verfasser: Luu, Khoa (VerfasserIn)
Weitere Verfasser: Savvides, Marios, Bui, Tien, Suen, Ching
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259619345
003 DE-627
005 20231224191606.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2554107  |2 doi 
028 5 2 |a pubmed24n0865.xml 
035 |a (DE-627)NLM259619345 
035 |a (NLM)27101597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luu, Khoa  |e verfasserin  |4 aut 
245 1 0 |a Compressed Submanifold Multifactor Analysis 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Although widely used, Multilinear PCA (MPCA), one of the leading multilinear analysis methods, still suffers from four major drawbacks. First, it is very sensitive to outliers and noise. Second, it is unable to cope with missing values. Third, it is computationally expensive since MPCA deals with large multi-dimensional datasets. Finally, it is unable to maintain the local geometrical structures due to the averaging process. This paper proposes a novel approach named Compressed Submanifold Multifactor Analysis (CSMA) to solve the four problems mentioned above. Our approach can deal with the problem of missing values and outliers via SVD-L1. The Random Projection method is used to obtain the fast low-rank approximation of a given multifactor dataset. In addition, it is able to preserve the geometry of the original data. Our CSMA method can be used efficiently for multiple purposes, e.g. noise and outlier removal, estimation of missing values, biometric applications. We show that CSMA method can achieve good results and is very efficient in the inpainting problem as compared to [1], [2]. Our method also achieves higher face recognition rates compared to LRTC, SPMA, MPCA and some other methods, i.e. PCA, LDA and LPP, on three challenging face databases, i.e. CMU-MPIE, CMU-PIE and Extended YALE-B 
650 4 |a Journal Article 
700 1 |a Savvides, Marios  |e verfasserin  |4 aut 
700 1 |a Bui, Tien  |e verfasserin  |4 aut 
700 1 |a Suen, Ching  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 3 vom: 20. März, Seite 444-456  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:3  |g day:20  |g month:03  |g pages:444-456 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2554107  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 3  |b 20  |c 03  |h 444-456