Convex Sparse Spectral Clustering : Single-View to Multi-View

Spectral clustering (SC) is one of the most widely used methods for data clustering. It first finds a low-dimensional embedding U of data by computing the eigenvectors of the normalized Laplacian matrix, and then performs k-means on UT to get the final clustering result. In this paper, we observe th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 6 vom: 03. Juni, Seite 2833-2843
1. Verfasser: Canyi Lu (VerfasserIn)
Weitere Verfasser: Shuicheng Yan, Zhouchen Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259544558
003 DE-627
005 20231224191430.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2553459  |2 doi 
028 5 2 |a pubmed24n0865.xml 
035 |a (DE-627)NLM259544558 
035 |a (NLM)27093625 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Canyi Lu  |e verfasserin  |4 aut 
245 1 0 |a Convex Sparse Spectral Clustering  |b Single-View to Multi-View 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Spectral clustering (SC) is one of the most widely used methods for data clustering. It first finds a low-dimensional embedding U of data by computing the eigenvectors of the normalized Laplacian matrix, and then performs k-means on UT to get the final clustering result. In this paper, we observe that, in the ideal case, UUT should be block diagonal and thus sparse. Therefore, we propose the sparse SC (SSC) method that extends the SC with sparse regularization on UUT. To address the computational issue of the nonconvex SSC model, we propose a novel convex relaxation of SSC based on the convex hull of the fixed rank projection matrices. Then, the convex SSC model can be efficiently solved by the alternating direction method of multipliers Furthermore, we propose the pairwise SSC that extends SSC to boost the clustering performance by using the multi-view information of data. Experimental comparisons with several baselines on real-world datasets testify to the efficacy of our proposed methods 
650 4 |a Journal Article 
700 1 |a Shuicheng Yan  |e verfasserin  |4 aut 
700 1 |a Zhouchen Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 6 vom: 03. Juni, Seite 2833-2843  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:6  |g day:03  |g month:06  |g pages:2833-2843 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2553459  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 6  |b 03  |c 06  |h 2833-2843