A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures

Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids. - 1998. - 90(2016) vom: 15. Mai, Seite 179-202
1. Verfasser: Ma, Qiang (VerfasserIn)
Weitere Verfasser: Cheng, Huanyu, Jang, Kyung-In, Luan, Haiwen, Hwang, Keh-Chih, Rogers, John A, Huang, Yonggang, Zhang, Yihui
Format: Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of the mechanics and physics of solids
Schlagworte:Journal Article Bio-inspired materials Finite deformation Hierarchical design Horseshoe microstructure Lattice materials Stress-strain curves
LEADER 01000caa a22002652c 4500
001 NLM259490695
003 DE-627
005 20250220004041.0
007 tu
008 231224s2016 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0864.xml 
035 |a (DE-627)NLM259490695 
035 |a (NLM)27087704 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Qiang  |e verfasserin  |4 aut 
245 1 2 |a A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions 
650 4 |a Journal Article 
650 4 |a Bio-inspired materials 
650 4 |a Finite deformation 
650 4 |a Hierarchical design 
650 4 |a Horseshoe microstructure 
650 4 |a Lattice materials 
650 4 |a Stress-strain curves 
700 1 |a Cheng, Huanyu  |e verfasserin  |4 aut 
700 1 |a Jang, Kyung-In  |e verfasserin  |4 aut 
700 1 |a Luan, Haiwen  |e verfasserin  |4 aut 
700 1 |a Hwang, Keh-Chih  |e verfasserin  |4 aut 
700 1 |a Rogers, John A  |e verfasserin  |4 aut 
700 1 |a Huang, Yonggang  |e verfasserin  |4 aut 
700 1 |a Zhang, Yihui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of the mechanics and physics of solids  |d 1998  |g 90(2016) vom: 15. Mai, Seite 179-202  |w (DE-627)NLM098253786  |x 0022-5096  |7 nnas 
773 1 8 |g volume:90  |g year:2016  |g day:15  |g month:05  |g pages:179-202 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 90  |j 2016  |b 15  |c 05  |h 179-202